具有严格凸边界的紧黎曼流形部分走时表示的唯一性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
E. Pavlechko, Teemu Saksala
{"title":"具有严格凸边界的紧黎曼流形部分走时表示的唯一性","authors":"E. Pavlechko, Teemu Saksala","doi":"10.3934/ipi.2022028","DOIUrl":null,"url":null,"abstract":"In this paper a compact Riemannian manifold with strictly convex boundary is reconstructed from its partial travel time data. This data assumes that an open measurement region on the boundary is given, and that for every point in the manifold, the respective distance function to the points on the measurement region is known. This geometric inverse problem has many connections to seismology, in particular to microseismicity. The reconstruction is based on embedding the manifold in a function space. This requires the differentiation of the distance functions. Therefore this paper also studies some global regularity properties of the distance function on a compact Riemannian manifold with strictly convex boundary.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary\",\"authors\":\"E. Pavlechko, Teemu Saksala\",\"doi\":\"10.3934/ipi.2022028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a compact Riemannian manifold with strictly convex boundary is reconstructed from its partial travel time data. This data assumes that an open measurement region on the boundary is given, and that for every point in the manifold, the respective distance function to the points on the measurement region is known. This geometric inverse problem has many connections to seismology, in particular to microseismicity. The reconstruction is based on embedding the manifold in a function space. This requires the differentiation of the distance functions. Therefore this paper also studies some global regularity properties of the distance function on a compact Riemannian manifold with strictly convex boundary.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文利用黎曼流形的部分走时数据重构了具有严格凸边界的紧黎曼流形。该数据假设边界上有一个开放的测量区域,并且对于流形中的每个点,测量区域上的点的距离函数是已知的。这个几何逆问题与地震学,特别是与微地震活动有许多联系。重构是基于将流形嵌入到函数空间中。这需要对距离函数求导。因此,本文还研究了具有严格凸边界的紧黎曼流形上距离函数的一些全局正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary
In this paper a compact Riemannian manifold with strictly convex boundary is reconstructed from its partial travel time data. This data assumes that an open measurement region on the boundary is given, and that for every point in the manifold, the respective distance function to the points on the measurement region is known. This geometric inverse problem has many connections to seismology, in particular to microseismicity. The reconstruction is based on embedding the manifold in a function space. This requires the differentiation of the distance functions. Therefore this paper also studies some global regularity properties of the distance function on a compact Riemannian manifold with strictly convex boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信