{"title":"用模糊边界条件求解不确定微分方程","authors":"T. D. Rao, S. Chakraverty","doi":"10.18311/JIMS/2019/18122","DOIUrl":null,"url":null,"abstract":"In this paper, a novel technique has been developed for solving a general linear dierential equation with fuzzy boundary conditions. The target has been to use the developed technique to solve in particular the radon transport (subsurface soil to buildings) equation with uncertain (fuzzy) boundary conditions. The fuzzy boundary condition has been described by a triangular fuzzy number (TFN). Corresponding results are presented in term of plots and are also compared with crisp ones.","PeriodicalId":38246,"journal":{"name":"Journal of the Indian Mathematical Society","volume":"86 1","pages":"286-295"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solving Uncertain Differential Equation with Fuzzy Boundary Conditions\",\"authors\":\"T. D. Rao, S. Chakraverty\",\"doi\":\"10.18311/JIMS/2019/18122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel technique has been developed for solving a general linear dierential equation with fuzzy boundary conditions. The target has been to use the developed technique to solve in particular the radon transport (subsurface soil to buildings) equation with uncertain (fuzzy) boundary conditions. The fuzzy boundary condition has been described by a triangular fuzzy number (TFN). Corresponding results are presented in term of plots and are also compared with crisp ones.\",\"PeriodicalId\":38246,\"journal\":{\"name\":\"Journal of the Indian Mathematical Society\",\"volume\":\"86 1\",\"pages\":\"286-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JIMS/2019/18122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JIMS/2019/18122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Solving Uncertain Differential Equation with Fuzzy Boundary Conditions
In this paper, a novel technique has been developed for solving a general linear dierential equation with fuzzy boundary conditions. The target has been to use the developed technique to solve in particular the radon transport (subsurface soil to buildings) equation with uncertain (fuzzy) boundary conditions. The fuzzy boundary condition has been described by a triangular fuzzy number (TFN). Corresponding results are presented in term of plots and are also compared with crisp ones.
期刊介绍:
The Society began publishing Progress Reports right from 1907 and then the Journal from 1908 (The 1908 and 1909 issues of the Journal are entitled "The Journal of the Indian Mathematical Club"). From 1910 onwards,it is published as its current title ''the Journal of Indian Mathematical Society. The four issues of the Journal constitute a single volume and it is published in two parts: issues 1 and 2 (January to June) as one part and issues 3 and 4 (July to December) as the second part. The four issues of the Mathematics Student (another periodical of the Society) are published as a single yearly volume. Only the original research papers of high quality are published in the Journal of Indian Mathematical Society.