{"title":"即使根据麦克劳林级数,也可以精确地估计扁平椭圆的周长","authors":"V. Lampret","doi":"10.4067/s0719-06462019000200051","DOIUrl":null,"url":null,"abstract":"For the perimeter \\(P(a,b)\\) of an ellipse with the semi-axes \\(a\\ge b\\ge 0\\) a sequence \\(Q_n(a,b)\\) is constructed such that the relative error of the approximation \\(P(a,b)\\approx Q_n(a,b)\\) satisfies the following inequalities \n\\(0\\le -\\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\\le\\frac{(1-q^2)^{n+1}}{(2n+1)^2}\\) \n\\(\\le \\frac{1}{(2n+1)^2}\\,e^{-q^2(n+1)},\\) \n \n \n \ntrue for \\(n\\in{\\mathbb N}\\) and \\(q=\\frac{b}{a}\\in[0,1]\\).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series\",\"authors\":\"V. Lampret\",\"doi\":\"10.4067/s0719-06462019000200051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the perimeter \\\\(P(a,b)\\\\) of an ellipse with the semi-axes \\\\(a\\\\ge b\\\\ge 0\\\\) a sequence \\\\(Q_n(a,b)\\\\) is constructed such that the relative error of the approximation \\\\(P(a,b)\\\\approx Q_n(a,b)\\\\) satisfies the following inequalities \\n\\\\(0\\\\le -\\\\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\\\\le\\\\frac{(1-q^2)^{n+1}}{(2n+1)^2}\\\\) \\n\\\\(\\\\le \\\\frac{1}{(2n+1)^2}\\\\,e^{-q^2(n+1)},\\\\) \\n \\n \\n \\ntrue for \\\\(n\\\\in{\\\\mathbb N}\\\\) and \\\\(q=\\\\frac{b}{a}\\\\in[0,1]\\\\).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462019000200051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462019000200051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series
For the perimeter \(P(a,b)\) of an ellipse with the semi-axes \(a\ge b\ge 0\) a sequence \(Q_n(a,b)\) is constructed such that the relative error of the approximation \(P(a,b)\approx Q_n(a,b)\) satisfies the following inequalities
\(0\le -\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\le\frac{(1-q^2)^{n+1}}{(2n+1)^2}\)
\(\le \frac{1}{(2n+1)^2}\,e^{-q^2(n+1)},\)
true for \(n\in{\mathbb N}\) and \(q=\frac{b}{a}\in[0,1]\).