即使根据麦克劳林级数,也可以精确地估计扁平椭圆的周长

IF 0.6 Q3 MATHEMATICS
V. Lampret
{"title":"即使根据麦克劳林级数,也可以精确地估计扁平椭圆的周长","authors":"V. Lampret","doi":"10.4067/s0719-06462019000200051","DOIUrl":null,"url":null,"abstract":"For the perimeter \\(P(a,b)\\) of an ellipse with the semi-axes \\(a\\ge b\\ge 0\\) a sequence \\(Q_n(a,b)\\) is constructed such that the relative error of the approximation \\(P(a,b)\\approx Q_n(a,b)\\) satisfies the following inequalities \n\\(0\\le -\\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\\le\\frac{(1-q^2)^{n+1}}{(2n+1)^2}\\) \n\\(\\le \\frac{1}{(2n+1)^2}\\,e^{-q^2(n+1)},\\) \n \n \n \ntrue for \\(n\\in{\\mathbb N}\\) and \\(q=\\frac{b}{a}\\in[0,1]\\).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series\",\"authors\":\"V. Lampret\",\"doi\":\"10.4067/s0719-06462019000200051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the perimeter \\\\(P(a,b)\\\\) of an ellipse with the semi-axes \\\\(a\\\\ge b\\\\ge 0\\\\) a sequence \\\\(Q_n(a,b)\\\\) is constructed such that the relative error of the approximation \\\\(P(a,b)\\\\approx Q_n(a,b)\\\\) satisfies the following inequalities \\n\\\\(0\\\\le -\\\\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\\\\le\\\\frac{(1-q^2)^{n+1}}{(2n+1)^2}\\\\) \\n\\\\(\\\\le \\\\frac{1}{(2n+1)^2}\\\\,e^{-q^2(n+1)},\\\\) \\n \\n \\n \\ntrue for \\\\(n\\\\in{\\\\mathbb N}\\\\) and \\\\(q=\\\\frac{b}{a}\\\\in[0,1]\\\\).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462019000200051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462019000200051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于具有半轴的椭圆的周长\(P(a,b)\),构造了一个序列\(Q_n(a,b)\)使得近似值的相对误差\(P frac{1}{(2n+1)^2}\,e^{-Q^2(n+1)},\)对于\(n\in{\mathbb n}\)和\(q=\frac{b}{a}\ in[0,1]\)为true。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series
For the perimeter \(P(a,b)\) of an ellipse with the semi-axes \(a\ge b\ge 0\) a sequence \(Q_n(a,b)\) is constructed such that the relative error of the approximation \(P(a,b)\approx Q_n(a,b)\) satisfies the following inequalities \(0\le -\frac{P(a,b)-Q_n(a,b)}{P(a,b)}\le\frac{(1-q^2)^{n+1}}{(2n+1)^2}\) \(\le \frac{1}{(2n+1)^2}\,e^{-q^2(n+1)},\) true for \(n\in{\mathbb N}\) and \(q=\frac{b}{a}\in[0,1]\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信