$k$-Pell序列中的Fermat和Mersenne数

Q3 Mathematics
B. Normenyo, S. Rihane, A. Togbé
{"title":"$k$-Pell序列中的Fermat和Mersenne数","authors":"B. Normenyo, S. Rihane, A. Togbé","doi":"10.30970/ms.56.2.115-123","DOIUrl":null,"url":null,"abstract":"For an integer $k\\geq 2$, let $(P_n^{(k)})_{n\\geq 2-k}$ be the $k$-generalized Pell sequence, which starts with $0,\\ldots,0,1$ ($k$ terms) and each term afterwards is defined by the recurrence$P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\cdots +P_{n-k}^{(k)},\\quad \\text{for all }n \\geq 2.$For any positive integer $n$, a number of the form $2^n+1$ is referred to as a Fermat number, while a number of the form $2^n-1$ is referred to as a Mersenne number. The goal of this paper is to determine Fermat and Mersenne numbers which are members of the $k$-generalized Pell sequence. More precisely, we solve the Diophantine equation $P^{(k)}_n=2^a\\pm 1$ in positive integers $n, k, a$ with $k \\geq 2$, $a\\geq 1$. We prove a theorem which asserts that, if the Diophantine equation $P^{(k)}_n=2^a\\pm 1$ has a solution $(n,a,k)$ in positive integers $n, k, a$ with $k \\geq 2$, $a\\geq 1$, then we must have that $(n,a,k)\\in \\{(1,1,k),(3,2,k),(5,5,3)\\}$. As a result of our theorem, we deduce that the number $1$ is the only Mersenne number and the number $5$ is the only Fermat number in the $k$-Pell sequence.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fermat and Mersenne numbers in $k$-Pell sequence\",\"authors\":\"B. Normenyo, S. Rihane, A. Togbé\",\"doi\":\"10.30970/ms.56.2.115-123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integer $k\\\\geq 2$, let $(P_n^{(k)})_{n\\\\geq 2-k}$ be the $k$-generalized Pell sequence, which starts with $0,\\\\ldots,0,1$ ($k$ terms) and each term afterwards is defined by the recurrence$P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\\\\cdots +P_{n-k}^{(k)},\\\\quad \\\\text{for all }n \\\\geq 2.$For any positive integer $n$, a number of the form $2^n+1$ is referred to as a Fermat number, while a number of the form $2^n-1$ is referred to as a Mersenne number. The goal of this paper is to determine Fermat and Mersenne numbers which are members of the $k$-generalized Pell sequence. More precisely, we solve the Diophantine equation $P^{(k)}_n=2^a\\\\pm 1$ in positive integers $n, k, a$ with $k \\\\geq 2$, $a\\\\geq 1$. We prove a theorem which asserts that, if the Diophantine equation $P^{(k)}_n=2^a\\\\pm 1$ has a solution $(n,a,k)$ in positive integers $n, k, a$ with $k \\\\geq 2$, $a\\\\geq 1$, then we must have that $(n,a,k)\\\\in \\\\{(1,1,k),(3,2,k),(5,5,3)\\\\}$. As a result of our theorem, we deduce that the number $1$ is the only Mersenne number and the number $5$ is the only Fermat number in the $k$-Pell sequence.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.2.115-123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.2.115-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

对于整数$k\geq 2$,设$(P_n^{(k)})_{n\geq 2-k}$为$k$广义佩尔序列,该序列以$0,\ldots,0,1$ ($k$ terms)开始,之后的每一项由递归式$P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)},\quad \text{for all }n \geq 2.$定义。对于任何正整数$n$,形式为$2^n+1$的数称为费马数,而形式为$2^n-1$的数称为梅森数。本文的目的是确定$k$ -广义Pell序列中的费马数和梅森数。更精确地说,我们用$k \geq 2$, $a\geq 1$解丢芬图方程$P^{(k)}_n=2^a\pm 1$为正整数$n, k, a$。我们证明了一个定理,如果丢芬图方程$P^{(k)}_n=2^a\pm 1$有一个正整数形式的解$(n,a,k)$, $n, k, a$和$k \geq 2$$a\geq 1$,那么我们一定有$(n,a,k)\in \{(1,1,k),(3,2,k),(5,5,3)\}$。根据我们的定理,我们推断出$1$是$k$ -Pell数列中唯一的梅森数,$5$是唯一的费马数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fermat and Mersenne numbers in $k$-Pell sequence
For an integer $k\geq 2$, let $(P_n^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence, which starts with $0,\ldots,0,1$ ($k$ terms) and each term afterwards is defined by the recurrence$P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)},\quad \text{for all }n \geq 2.$For any positive integer $n$, a number of the form $2^n+1$ is referred to as a Fermat number, while a number of the form $2^n-1$ is referred to as a Mersenne number. The goal of this paper is to determine Fermat and Mersenne numbers which are members of the $k$-generalized Pell sequence. More precisely, we solve the Diophantine equation $P^{(k)}_n=2^a\pm 1$ in positive integers $n, k, a$ with $k \geq 2$, $a\geq 1$. We prove a theorem which asserts that, if the Diophantine equation $P^{(k)}_n=2^a\pm 1$ has a solution $(n,a,k)$ in positive integers $n, k, a$ with $k \geq 2$, $a\geq 1$, then we must have that $(n,a,k)\in \{(1,1,k),(3,2,k),(5,5,3)\}$. As a result of our theorem, we deduce that the number $1$ is the only Mersenne number and the number $5$ is the only Fermat number in the $k$-Pell sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信