{"title":"周期函数的和与积","authors":"R. Deville","doi":"10.2478/mjpaa-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. The purpose of this note is to prove this result and also to study the possibility of decomposing more general polynomials into sum of periodic functions.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"204 - 208"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums and products of periodic functions\",\"authors\":\"R. Deville\",\"doi\":\"10.2478/mjpaa-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. The purpose of this note is to prove this result and also to study the possibility of decomposing more general polynomials into sum of periodic functions.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"204 - 208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. The purpose of this note is to prove this result and also to study the possibility of decomposing more general polynomials into sum of periodic functions.