梅森定理与完全二元多项式

IF 0.5 Q3 MATHEMATICS
L. Gallardo
{"title":"梅森定理与完全二元多项式","authors":"L. Gallardo","doi":"10.24330/ieja.768086","DOIUrl":null,"url":null,"abstract":". We prove that there is no perfect binary polynomial R that is the sum of two appropriate powers, besides, possibly R = P +1 with P irreducible. The proofs follow from analogue results involving the ABC-theorem for polynomials and a classical identity.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MASON-STOTHERS THEOREM AND PERFECT BINARY POLYNOMIALS\",\"authors\":\"L. Gallardo\",\"doi\":\"10.24330/ieja.768086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove that there is no perfect binary polynomial R that is the sum of two appropriate powers, besides, possibly R = P +1 with P irreducible. The proofs follow from analogue results involving the ABC-theorem for polynomials and a classical identity.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.768086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.768086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 我们证明了不存在两个适当的幂和的完美二元多项式R,并且可能R = P +1且P不可约。这些证明来自多项式的abc定理和一个经典恒等式的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MASON-STOTHERS THEOREM AND PERFECT BINARY POLYNOMIALS
. We prove that there is no perfect binary polynomial R that is the sum of two appropriate powers, besides, possibly R = P +1 with P irreducible. The proofs follow from analogue results involving the ABC-theorem for polynomials and a classical identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信