基于深度学习的情绪检测

Yuwei Chen, Jia-Zhou He
{"title":"基于深度学习的情绪检测","authors":"Yuwei Chen, Jia-Zhou He","doi":"10.36227/techrxiv.18866159","DOIUrl":null,"url":null,"abstract":"Since the deep learning methods used in current face recognition do not balance well between recognition rate and recognition speed, the present work proposed a face expression recognition model based on multilayer feature fusion with lightweight convolutional networks. The model is tested on two commonly used real expression datasets, FER- 2013 and AffectNet, the accuracy of ms_model_M is 74.35% and 56.67%, respectively, and the accuracy of the traditional MovbliNet model is 74.11% and 56.48% in the tests of these two datasets.","PeriodicalId":67799,"journal":{"name":"电脑和通信(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep learning-based emotion detection\",\"authors\":\"Yuwei Chen, Jia-Zhou He\",\"doi\":\"10.36227/techrxiv.18866159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the deep learning methods used in current face recognition do not balance well between recognition rate and recognition speed, the present work proposed a face expression recognition model based on multilayer feature fusion with lightweight convolutional networks. The model is tested on two commonly used real expression datasets, FER- 2013 and AffectNet, the accuracy of ms_model_M is 74.35% and 56.67%, respectively, and the accuracy of the traditional MovbliNet model is 74.11% and 56.48% in the tests of these two datasets.\",\"PeriodicalId\":67799,\"journal\":{\"name\":\"电脑和通信(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电脑和通信(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.18866159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电脑和通信(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.36227/techrxiv.18866159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

鉴于当前人脸识别中使用的深度学习方法在识别率和识别速度之间没有很好的平衡,本文提出了一种基于多层特征融合和轻量级卷积网络的人脸表情识别模型。该模型在FER-2013和AffectNet两个常用的真实表达数据集上进行了测试,在这两个数据集的测试中,ms_model_M的准确率分别为74.35%和56.67%,传统MovbliNet模型的准确率为74.11%和56.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based emotion detection
Since the deep learning methods used in current face recognition do not balance well between recognition rate and recognition speed, the present work proposed a face expression recognition model based on multilayer feature fusion with lightweight convolutional networks. The model is tested on two commonly used real expression datasets, FER- 2013 and AffectNet, the accuracy of ms_model_M is 74.35% and 56.67%, respectively, and the accuracy of the traditional MovbliNet model is 74.11% and 56.48% in the tests of these two datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信