{"title":"$EQ$-代数的$n$-fold顽固滤波器和$n$-fold奇异(预)滤波器","authors":"A. Paad, A. Jafari","doi":"10.22124/JART.2021.16939.1210","DOIUrl":null,"url":null,"abstract":"In this paper, the notions of $n$-fold obstinate and $n$-fold fantastic (pre)filterin $EQ$-algebras are introduced and the relationship among $n$-fold obstinate, maximal, $n$-fold fantastic, and $n$-fold (positive) implicative prefilters are investigated. Moreover, the quotient $EQ$-algebra induced by an $n$-fold obstinate filter is studied and it is proved that the quotient $EQ$-algebra induced byan $n$-fold fantastic filter of a good $EQ$-algebra with bottom element $0$ is an involutive $EQ$-algebra. Finally, the relationships between types of $n$-fold filters in residuated $EQ$-algebras is shown by diagrams","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"31-50"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$n$-fold obstinate and $n$-fold fantastic (pre)filters of $EQ$-algebras\",\"authors\":\"A. Paad, A. Jafari\",\"doi\":\"10.22124/JART.2021.16939.1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the notions of $n$-fold obstinate and $n$-fold fantastic (pre)filterin $EQ$-algebras are introduced and the relationship among $n$-fold obstinate, maximal, $n$-fold fantastic, and $n$-fold (positive) implicative prefilters are investigated. Moreover, the quotient $EQ$-algebra induced by an $n$-fold obstinate filter is studied and it is proved that the quotient $EQ$-algebra induced byan $n$-fold fantastic filter of a good $EQ$-algebra with bottom element $0$ is an involutive $EQ$-algebra. Finally, the relationships between types of $n$-fold filters in residuated $EQ$-algebras is shown by diagrams\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"31-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.16939.1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.16939.1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
$n$-fold obstinate and $n$-fold fantastic (pre)filters of $EQ$-algebras
In this paper, the notions of $n$-fold obstinate and $n$-fold fantastic (pre)filterin $EQ$-algebras are introduced and the relationship among $n$-fold obstinate, maximal, $n$-fold fantastic, and $n$-fold (positive) implicative prefilters are investigated. Moreover, the quotient $EQ$-algebra induced by an $n$-fold obstinate filter is studied and it is proved that the quotient $EQ$-algebra induced byan $n$-fold fantastic filter of a good $EQ$-algebra with bottom element $0$ is an involutive $EQ$-algebra. Finally, the relationships between types of $n$-fold filters in residuated $EQ$-algebras is shown by diagrams