一种基于摩擦电和压阻效应的按钮开关启发的双工水凝胶传感器,用于检测动、静压力

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhensheng Chen, Jiahao Yu, Xiaoxi Zhang, Haozhe Zeng, Yunjia Li, Jin Wu, K. Tao
{"title":"一种基于摩擦电和压阻效应的按钮开关启发的双工水凝胶传感器,用于检测动、静压力","authors":"Zhensheng Chen, Jiahao Yu, Xiaoxi Zhang, Haozhe Zeng, Yunjia Li, Jin Wu, K. Tao","doi":"10.1063/10.0010120","DOIUrl":null,"url":null,"abstract":"The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces. In this paper, inspired by button switches, a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated. Because of its excellent mechanical strength and electrical stability, a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator. In addition, micro-pyramidal patterned polydimethylsiloxane (PDMS) acts as both the friction layer and the encapsulation elastomer, thereby boosting the triboelectric output performance significantly. The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures. The dynamic stress intensity (10–300 Pa), the action time, and the static variations (increase and decrease) of the pressure can be identified precisely from the dual-channel signals. Combined with a signal processing module, an intelligent visible door lamp is achieved for monitoring the entire “contact–hold–release–separation” state of the external stimulation, which shows great application potential for future smart robot e-skin and flexible electronics.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A button switch inspired duplex hydrogel sensor based on both triboelectric and piezoresistive effects for detecting dynamic and static pressure\",\"authors\":\"Zhensheng Chen, Jiahao Yu, Xiaoxi Zhang, Haozhe Zeng, Yunjia Li, Jin Wu, K. Tao\",\"doi\":\"10.1063/10.0010120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces. In this paper, inspired by button switches, a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated. Because of its excellent mechanical strength and electrical stability, a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator. In addition, micro-pyramidal patterned polydimethylsiloxane (PDMS) acts as both the friction layer and the encapsulation elastomer, thereby boosting the triboelectric output performance significantly. The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures. The dynamic stress intensity (10–300 Pa), the action time, and the static variations (increase and decrease) of the pressure can be identified precisely from the dual-channel signals. Combined with a signal processing module, an intelligent visible door lamp is achieved for monitoring the entire “contact–hold–release–separation” state of the external stimulation, which shows great application potential for future smart robot e-skin and flexible electronics.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0010120\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0010120","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

全面感知复杂压力变化的能力对于可穿戴电子产品和灵活的人机界面至关重要。本文受按钮开关的启发,设计并制作了一种基于摩擦电和压阻效应结合的双工触觉传感器。由于其优异的机械强度和电稳定性,双网状离子水凝胶既可作为导电电极又可作为弹性电流调节器。此外,微锥体聚二甲基硅氧烷(PDMS)同时作为摩擦层和封装弹性体,从而显著提高摩擦电输出性能。该双相水凝胶传感器具有综合传感能力,可以检测包括动、静压力在内的整个增产过程。动态应力强度(10-300 Pa)、作用时间和压力的静态变化(增加和减少)可以通过双通道信号精确识别。结合信号处理模块,实现了一种智能可视门灯,用于监控外部刺激的整个“接触-保持-释放-分离”状态,在未来智能机器人电子皮肤和柔性电子产品中显示出巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A button switch inspired duplex hydrogel sensor based on both triboelectric and piezoresistive effects for detecting dynamic and static pressure
The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces. In this paper, inspired by button switches, a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated. Because of its excellent mechanical strength and electrical stability, a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator. In addition, micro-pyramidal patterned polydimethylsiloxane (PDMS) acts as both the friction layer and the encapsulation elastomer, thereby boosting the triboelectric output performance significantly. The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures. The dynamic stress intensity (10–300 Pa), the action time, and the static variations (increase and decrease) of the pressure can be identified precisely from the dual-channel signals. Combined with a signal processing module, an intelligent visible door lamp is achieved for monitoring the entire “contact–hold–release–separation” state of the external stimulation, which shows great application potential for future smart robot e-skin and flexible electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信