{"title":"解释logit模型","authors":"L. J. Uberti","doi":"10.1177/1536867X221083855","DOIUrl":null,"url":null,"abstract":"The parameters of logit models are typically difficult to interpret, and the applied literature is replete with interpretive and computational mistakes. In this article, I review a menu of options to interpret the results of logistic regressions correctly and effectively using Stata. I consider marginal effects, partial effects, (contrasts of) predictive margins, elasticities, and odds and risk ratios. I also show that interaction terms are typically easier to interpret in practice than implied by the recent literature on this topic.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Interpreting logit models\",\"authors\":\"L. J. Uberti\",\"doi\":\"10.1177/1536867X221083855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameters of logit models are typically difficult to interpret, and the applied literature is replete with interpretive and computational mistakes. In this article, I review a menu of options to interpret the results of logistic regressions correctly and effectively using Stata. I consider marginal effects, partial effects, (contrasts of) predictive margins, elasticities, and odds and risk ratios. I also show that interaction terms are typically easier to interpret in practice than implied by the recent literature on this topic.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X221083855\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221083855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
The parameters of logit models are typically difficult to interpret, and the applied literature is replete with interpretive and computational mistakes. In this article, I review a menu of options to interpret the results of logistic regressions correctly and effectively using Stata. I consider marginal effects, partial effects, (contrasts of) predictive margins, elasticities, and odds and risk ratios. I also show that interaction terms are typically easier to interpret in practice than implied by the recent literature on this topic.
期刊介绍:
The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.