聚二甲基硅氧烷-中空玻璃微球复合泡沫的压缩性能

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alok K Upadhyay, A. Ullas
{"title":"聚二甲基硅氧烷-中空玻璃微球复合泡沫的压缩性能","authors":"Alok K Upadhyay, A. Ullas","doi":"10.1177/02624893221123391","DOIUrl":null,"url":null,"abstract":"Polymer syntactic foams are lightweight polymer composites that are prepared by introducing hollow microspheres in a resin. The main endeavour is to obtain a significant reduction in the weight of the composite along with energy absorption. The present investigation aims to prepare poly (dimethylsiloxane) (PDMS)-hollow glass microballoons (HGM) (40–60% v/v) syntactic foams. Not only did HGM reduce the density of the syntactic foams but also act as a reinforcing phase and increase the compressive properties of PDMS. A ∼25% reduction in density was obtained in syntactic foam when compared to the neat elastomer. Similarly, an improvement of ∼118% in compressive strength was attained at 40% loading of HGM in PDMS. Specific compressive strength and toughness values also registered improvements of the order of ∼191 and ∼240% respectively which highlight the potential of PDMS syntactic foams in varied applications. Graphical Abstract","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressive Properties of Poly (Dimethylsiloxane)–Hollow Glass Microballoons Syntactic Foams\",\"authors\":\"Alok K Upadhyay, A. Ullas\",\"doi\":\"10.1177/02624893221123391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer syntactic foams are lightweight polymer composites that are prepared by introducing hollow microspheres in a resin. The main endeavour is to obtain a significant reduction in the weight of the composite along with energy absorption. The present investigation aims to prepare poly (dimethylsiloxane) (PDMS)-hollow glass microballoons (HGM) (40–60% v/v) syntactic foams. Not only did HGM reduce the density of the syntactic foams but also act as a reinforcing phase and increase the compressive properties of PDMS. A ∼25% reduction in density was obtained in syntactic foam when compared to the neat elastomer. Similarly, an improvement of ∼118% in compressive strength was attained at 40% loading of HGM in PDMS. Specific compressive strength and toughness values also registered improvements of the order of ∼191 and ∼240% respectively which highlight the potential of PDMS syntactic foams in varied applications. Graphical Abstract\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893221123391\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893221123391","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

聚合物合成泡沫是通过在树脂中引入空心微球制备的轻质聚合物复合材料。主要的努力是使复合材料的重量和能量吸收显著减少。本研究旨在制备聚二甲基硅氧烷(PDMS)-中空玻璃微球(HGM) (40-60% v/v)复合泡沫。HGM不仅可以降低复合泡沫的密度,还可以作为增强相,提高PDMS的抗压性能。与整齐弹性体相比,合成泡沫的密度降低了25%。同样,在PDMS中HGM加载40%时,抗压强度提高了~ 118%。比抗压强度和韧性值也分别提高了~ 191和~ 240%,这突出了PDMS复合泡沫在各种应用中的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Properties of Poly (Dimethylsiloxane)–Hollow Glass Microballoons Syntactic Foams
Polymer syntactic foams are lightweight polymer composites that are prepared by introducing hollow microspheres in a resin. The main endeavour is to obtain a significant reduction in the weight of the composite along with energy absorption. The present investigation aims to prepare poly (dimethylsiloxane) (PDMS)-hollow glass microballoons (HGM) (40–60% v/v) syntactic foams. Not only did HGM reduce the density of the syntactic foams but also act as a reinforcing phase and increase the compressive properties of PDMS. A ∼25% reduction in density was obtained in syntactic foam when compared to the neat elastomer. Similarly, an improvement of ∼118% in compressive strength was attained at 40% loading of HGM in PDMS. Specific compressive strength and toughness values also registered improvements of the order of ∼191 and ∼240% respectively which highlight the potential of PDMS syntactic foams in varied applications. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信