M. Altun, Abdoul Nasser Aboubacar DAN BADAOU, A. DOĞAN DEMİR, U. Sahin, F. M. Kiziloglu, Serap Diler
{"title":"利用污水污泥和污水干湿法改善冻融盐碱土的水力特性","authors":"M. Altun, Abdoul Nasser Aboubacar DAN BADAOU, A. DOĞAN DEMİR, U. Sahin, F. M. Kiziloglu, Serap Diler","doi":"10.26471/cjees/2023/018/239","DOIUrl":null,"url":null,"abstract":"Soil improvement practices are needed to protect weakly aggregated saline-sodic soils in cold regions from the negative effects of freezing-thawing events. Amelioration of these soils by adding sewage sludge and applying wetting–drying process with wastewater can be a practical application due to aggregation to be increased with increase in organic matter. Therefore, a laboratory experiment has been conducted to determine the effects on soil properties with three stabilized sewage sludge doses (0, 50, 100 Mg ha−1), two freeze-thaw cycles (5 and 10 times), two wetting-drying intervals (4 and 8 days) and two water types (freshwater and recycled wastewater). The negative effects of freezing-thawing on organic matter and aggregate stability were determined. However, while sewage sludge increased organic matter, aggregate stability, salinity, exchangeable K and Ca+Mg contents, cation exchange capacity (CEC), it was instrumental in inducing a lower pH, exchangeable Na, CaCO3 and exchangeable sodium percentage (ESP), and thus improved field capacity and hydraulic conductivity. Wetting-drying with 8-day intervals and wastewater improved organic matter also. Therefore, it could be concluded that the improvement of hydraulic properties can be attributed to achieving better aggregate stability with increased organic matter in soil from sewage sludge. Long intervals of wetting-drying and recycled wastewater can promote good results as well. However, improving the findings with the proposed treatments in the outer field conditions of the regions exposed to freezing-thawing events will provide more practical use.","PeriodicalId":55272,"journal":{"name":"Carpathian Journal of Earth and Environmental Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVEMENT OF THE HYDRAULIC PROPERTIES OF SALINE-SODIC SOIL EXPOSED TO FREEZING-THAWING USING SEWAGE SLUDGE AND WETTING-DRYING PROCESS WITH WASTEWATER\",\"authors\":\"M. Altun, Abdoul Nasser Aboubacar DAN BADAOU, A. DOĞAN DEMİR, U. Sahin, F. M. Kiziloglu, Serap Diler\",\"doi\":\"10.26471/cjees/2023/018/239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil improvement practices are needed to protect weakly aggregated saline-sodic soils in cold regions from the negative effects of freezing-thawing events. Amelioration of these soils by adding sewage sludge and applying wetting–drying process with wastewater can be a practical application due to aggregation to be increased with increase in organic matter. Therefore, a laboratory experiment has been conducted to determine the effects on soil properties with three stabilized sewage sludge doses (0, 50, 100 Mg ha−1), two freeze-thaw cycles (5 and 10 times), two wetting-drying intervals (4 and 8 days) and two water types (freshwater and recycled wastewater). The negative effects of freezing-thawing on organic matter and aggregate stability were determined. However, while sewage sludge increased organic matter, aggregate stability, salinity, exchangeable K and Ca+Mg contents, cation exchange capacity (CEC), it was instrumental in inducing a lower pH, exchangeable Na, CaCO3 and exchangeable sodium percentage (ESP), and thus improved field capacity and hydraulic conductivity. Wetting-drying with 8-day intervals and wastewater improved organic matter also. Therefore, it could be concluded that the improvement of hydraulic properties can be attributed to achieving better aggregate stability with increased organic matter in soil from sewage sludge. Long intervals of wetting-drying and recycled wastewater can promote good results as well. However, improving the findings with the proposed treatments in the outer field conditions of the regions exposed to freezing-thawing events will provide more practical use.\",\"PeriodicalId\":55272,\"journal\":{\"name\":\"Carpathian Journal of Earth and Environmental Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Earth and Environmental Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.26471/cjees/2023/018/239\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Earth and Environmental Sciences","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.26471/cjees/2023/018/239","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
IMPROVEMENT OF THE HYDRAULIC PROPERTIES OF SALINE-SODIC SOIL EXPOSED TO FREEZING-THAWING USING SEWAGE SLUDGE AND WETTING-DRYING PROCESS WITH WASTEWATER
Soil improvement practices are needed to protect weakly aggregated saline-sodic soils in cold regions from the negative effects of freezing-thawing events. Amelioration of these soils by adding sewage sludge and applying wetting–drying process with wastewater can be a practical application due to aggregation to be increased with increase in organic matter. Therefore, a laboratory experiment has been conducted to determine the effects on soil properties with three stabilized sewage sludge doses (0, 50, 100 Mg ha−1), two freeze-thaw cycles (5 and 10 times), two wetting-drying intervals (4 and 8 days) and two water types (freshwater and recycled wastewater). The negative effects of freezing-thawing on organic matter and aggregate stability were determined. However, while sewage sludge increased organic matter, aggregate stability, salinity, exchangeable K and Ca+Mg contents, cation exchange capacity (CEC), it was instrumental in inducing a lower pH, exchangeable Na, CaCO3 and exchangeable sodium percentage (ESP), and thus improved field capacity and hydraulic conductivity. Wetting-drying with 8-day intervals and wastewater improved organic matter also. Therefore, it could be concluded that the improvement of hydraulic properties can be attributed to achieving better aggregate stability with increased organic matter in soil from sewage sludge. Long intervals of wetting-drying and recycled wastewater can promote good results as well. However, improving the findings with the proposed treatments in the outer field conditions of the regions exposed to freezing-thawing events will provide more practical use.
期刊介绍:
The publishing of CARPATHIAN JOURNAL of EARTH and ENVIRONMENTAL SCIENCES has started in 2006. The regularity of this magazine is biannual. The magazine will publish scientific works, in international purposes, in different areas of research, such as : geology, geography, environmental sciences, the environmental pollution and protection, environmental chemistry and physic, environmental biodegradation, climatic exchanges, fighting against natural disasters, protected areas, soil degradation, water quality, water supplies, sustainable development.