B. Ráth, D. V. Krishna, K. S. Kumar, G. K. S. Viswanadh
{"title":"关于对称点的星形函数逆的第三汉克尔行列式的锐界","authors":"B. Ráth, D. V. Krishna, K. S. Kumar, G. K. S. Viswanadh","doi":"10.30970/ms.58.1.45-50","DOIUrl":null,"url":null,"abstract":"We study the sharp bound for the third Hankel determinant for the inverse function $f$, when it belongs to of the class of starlike functions with respect to symmetric points.Let $\\mathcal{S}^{\\ast}_{s}$ be the class of starlike functions with respect to symmetric points. In the article proves the following statements (Theorem): If $f\\in \\mathcal{S}^{\\ast}_{s}$ then\\begin{equation*}\\big|H_{3,1}(f^{-1})\\big|\\leq1,\\end{equation*}and the result is sharp for $f(z)=z/(1-z^2).$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points\",\"authors\":\"B. Ráth, D. V. Krishna, K. S. Kumar, G. K. S. Viswanadh\",\"doi\":\"10.30970/ms.58.1.45-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the sharp bound for the third Hankel determinant for the inverse function $f$, when it belongs to of the class of starlike functions with respect to symmetric points.Let $\\\\mathcal{S}^{\\\\ast}_{s}$ be the class of starlike functions with respect to symmetric points. In the article proves the following statements (Theorem): If $f\\\\in \\\\mathcal{S}^{\\\\ast}_{s}$ then\\\\begin{equation*}\\\\big|H_{3,1}(f^{-1})\\\\big|\\\\leq1,\\\\end{equation*}and the result is sharp for $f(z)=z/(1-z^2).$\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.1.45-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.45-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points
We study the sharp bound for the third Hankel determinant for the inverse function $f$, when it belongs to of the class of starlike functions with respect to symmetric points.Let $\mathcal{S}^{\ast}_{s}$ be the class of starlike functions with respect to symmetric points. In the article proves the following statements (Theorem): If $f\in \mathcal{S}^{\ast}_{s}$ then\begin{equation*}\big|H_{3,1}(f^{-1})\big|\leq1,\end{equation*}and the result is sharp for $f(z)=z/(1-z^2).$