D. Hartanto, Safa Alhamad, K. Mahmoud, N. Kurdi, M. Zubair
{"title":"先进铅冷模块化核反应堆(ALMANAR)的Neutronics设计研究","authors":"D. Hartanto, Safa Alhamad, K. Mahmoud, N. Kurdi, M. Zubair","doi":"10.1504/ijnest.2020.10030863","DOIUrl":null,"url":null,"abstract":"A design of an advanced small modular reactor with long-life core is being studied in this paper. The core is designed to produce 45 MWth power with a lifetime of 20 years without refuelling. In order to achieve a compact design and have a good neutron economy, lead is considered as the coolant due to its excellent neutronics and thermo-physical properties. However, the lead coolant speed in the core is limited to 2 m/s to minimise the corrosion and erosion of the structural materials. On the other hand, U15N is used as the fuel which reflects excellent thermophysical properties and compatibility with lead. In this study, the neutronics properties of the core including the reactivity evolution during its lifetime, the control rod worth, and the fuel and coolant reactivity feedbacks are evaluated. It was found that ALMANAR could achieve a long-life core of about 22 effective full power years with very excellent inherent safety features. Monte Carlo Serpent code is used to perform the calculations in conjunction with the latest nuclear data library ENDF/B-VIII.0.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neutronics design study of an advanced lead-cooled modular nuclear reactor (ALMANAR)\",\"authors\":\"D. Hartanto, Safa Alhamad, K. Mahmoud, N. Kurdi, M. Zubair\",\"doi\":\"10.1504/ijnest.2020.10030863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design of an advanced small modular reactor with long-life core is being studied in this paper. The core is designed to produce 45 MWth power with a lifetime of 20 years without refuelling. In order to achieve a compact design and have a good neutron economy, lead is considered as the coolant due to its excellent neutronics and thermo-physical properties. However, the lead coolant speed in the core is limited to 2 m/s to minimise the corrosion and erosion of the structural materials. On the other hand, U15N is used as the fuel which reflects excellent thermophysical properties and compatibility with lead. In this study, the neutronics properties of the core including the reactivity evolution during its lifetime, the control rod worth, and the fuel and coolant reactivity feedbacks are evaluated. It was found that ALMANAR could achieve a long-life core of about 22 effective full power years with very excellent inherent safety features. Monte Carlo Serpent code is used to perform the calculations in conjunction with the latest nuclear data library ENDF/B-VIII.0.\",\"PeriodicalId\":35144,\"journal\":{\"name\":\"International Journal of Nuclear Energy Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nuclear Energy Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijnest.2020.10030863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnest.2020.10030863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Neutronics design study of an advanced lead-cooled modular nuclear reactor (ALMANAR)
A design of an advanced small modular reactor with long-life core is being studied in this paper. The core is designed to produce 45 MWth power with a lifetime of 20 years without refuelling. In order to achieve a compact design and have a good neutron economy, lead is considered as the coolant due to its excellent neutronics and thermo-physical properties. However, the lead coolant speed in the core is limited to 2 m/s to minimise the corrosion and erosion of the structural materials. On the other hand, U15N is used as the fuel which reflects excellent thermophysical properties and compatibility with lead. In this study, the neutronics properties of the core including the reactivity evolution during its lifetime, the control rod worth, and the fuel and coolant reactivity feedbacks are evaluated. It was found that ALMANAR could achieve a long-life core of about 22 effective full power years with very excellent inherent safety features. Monte Carlo Serpent code is used to perform the calculations in conjunction with the latest nuclear data library ENDF/B-VIII.0.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.