Zhiping Zhang, Z. Shen, Shanjia Zhang, Jie Chen, Shengqian Chen, Dongxue Li, Shuai Zhang, XiangJun Liu, Duo Wu, Y. Sheng, Q. Tang, Fahu Chen, Jianbao Liu
{"title":"全新世中期东亚夏季风最大值的湖平面证据和全新世晚期突然干旱事件对中国中北部史前文化的影响","authors":"Zhiping Zhang, Z. Shen, Shanjia Zhang, Jie Chen, Shengqian Chen, Dongxue Li, Shuai Zhang, XiangJun Liu, Duo Wu, Y. Sheng, Q. Tang, Fahu Chen, Jianbao Liu","doi":"10.1177/09596836221145362","DOIUrl":null,"url":null,"abstract":"Uncertainty regarding the timing of the highest Holocene water level of enclosed Dali Lake in northern China has led to controversy about whether the East Asian summer monsoon (EASM) peaked in the early Holocene or the mid-Holocene. Therefore, a record combining a reliable chronology with unambiguous lake level indicators is essential to resolve the issue. In this study, we established a temporal sequence of well-preserved paleolake shorelines at different elevations around Dali Lake using quartz optically stimulated luminescence (OSL) dating. Combining the new OSL-based chronological data with the previously published ages of beach ridges, we constructed an integrated lake level record for Dali Lake since the last deglaciation; the record is chronologically well-constrained and provides a clearer representation of lake level changes than previous studies. The main findings are as follows: (1) the level of Dali Lake rose gradually during 14.5–8.0 ka and reached a highest level during 8.0–6.0 ka that was ~61 m higher than today, before gradually declining after ~6.0 ka; (2) although the short-lived highstand of Dali Lake during the early Holocene was caused by both monsoon precipitation and snow/ice meltwater influx, the mid-Holocene lake level maximum was mainly the result of increased monsoon precipitation. These findings indicate that the EASM maximum in the region occurred during the mid-Holocene, which is supported by precipitation-proxy records from the EASM margin; (3) a major decline (~30 m) of the level of Dali Lake occurred at ~4.2 ka, reflecting a regional-scale drought event in northern China. Combined with near-contemporaneous frequent floods in the lower Yellow River, we propose that the pattern of “drought in northern China, flooding in central China” occurred during ~4.2–3.8 ka, triggering the migration of the prehistoric human population of the area to the central Plain of China. This population migration may have destabilized the existing social order and promoted the emergence of more complex societies, leading to the development of early civilization in north-central China.","PeriodicalId":50402,"journal":{"name":"Holocene","volume":"33 1","pages":"382 - 399"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lake level evidence for a mid-Holocene East Asian summer monsoon maximum and the impact of an abrupt late-Holocene drought event on prehistoric cultures in north-central China\",\"authors\":\"Zhiping Zhang, Z. Shen, Shanjia Zhang, Jie Chen, Shengqian Chen, Dongxue Li, Shuai Zhang, XiangJun Liu, Duo Wu, Y. Sheng, Q. Tang, Fahu Chen, Jianbao Liu\",\"doi\":\"10.1177/09596836221145362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty regarding the timing of the highest Holocene water level of enclosed Dali Lake in northern China has led to controversy about whether the East Asian summer monsoon (EASM) peaked in the early Holocene or the mid-Holocene. Therefore, a record combining a reliable chronology with unambiguous lake level indicators is essential to resolve the issue. In this study, we established a temporal sequence of well-preserved paleolake shorelines at different elevations around Dali Lake using quartz optically stimulated luminescence (OSL) dating. Combining the new OSL-based chronological data with the previously published ages of beach ridges, we constructed an integrated lake level record for Dali Lake since the last deglaciation; the record is chronologically well-constrained and provides a clearer representation of lake level changes than previous studies. The main findings are as follows: (1) the level of Dali Lake rose gradually during 14.5–8.0 ka and reached a highest level during 8.0–6.0 ka that was ~61 m higher than today, before gradually declining after ~6.0 ka; (2) although the short-lived highstand of Dali Lake during the early Holocene was caused by both monsoon precipitation and snow/ice meltwater influx, the mid-Holocene lake level maximum was mainly the result of increased monsoon precipitation. These findings indicate that the EASM maximum in the region occurred during the mid-Holocene, which is supported by precipitation-proxy records from the EASM margin; (3) a major decline (~30 m) of the level of Dali Lake occurred at ~4.2 ka, reflecting a regional-scale drought event in northern China. Combined with near-contemporaneous frequent floods in the lower Yellow River, we propose that the pattern of “drought in northern China, flooding in central China” occurred during ~4.2–3.8 ka, triggering the migration of the prehistoric human population of the area to the central Plain of China. This population migration may have destabilized the existing social order and promoted the emergence of more complex societies, leading to the development of early civilization in north-central China.\",\"PeriodicalId\":50402,\"journal\":{\"name\":\"Holocene\",\"volume\":\"33 1\",\"pages\":\"382 - 399\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holocene\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1177/09596836221145362\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holocene","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1177/09596836221145362","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Lake level evidence for a mid-Holocene East Asian summer monsoon maximum and the impact of an abrupt late-Holocene drought event on prehistoric cultures in north-central China
Uncertainty regarding the timing of the highest Holocene water level of enclosed Dali Lake in northern China has led to controversy about whether the East Asian summer monsoon (EASM) peaked in the early Holocene or the mid-Holocene. Therefore, a record combining a reliable chronology with unambiguous lake level indicators is essential to resolve the issue. In this study, we established a temporal sequence of well-preserved paleolake shorelines at different elevations around Dali Lake using quartz optically stimulated luminescence (OSL) dating. Combining the new OSL-based chronological data with the previously published ages of beach ridges, we constructed an integrated lake level record for Dali Lake since the last deglaciation; the record is chronologically well-constrained and provides a clearer representation of lake level changes than previous studies. The main findings are as follows: (1) the level of Dali Lake rose gradually during 14.5–8.0 ka and reached a highest level during 8.0–6.0 ka that was ~61 m higher than today, before gradually declining after ~6.0 ka; (2) although the short-lived highstand of Dali Lake during the early Holocene was caused by both monsoon precipitation and snow/ice meltwater influx, the mid-Holocene lake level maximum was mainly the result of increased monsoon precipitation. These findings indicate that the EASM maximum in the region occurred during the mid-Holocene, which is supported by precipitation-proxy records from the EASM margin; (3) a major decline (~30 m) of the level of Dali Lake occurred at ~4.2 ka, reflecting a regional-scale drought event in northern China. Combined with near-contemporaneous frequent floods in the lower Yellow River, we propose that the pattern of “drought in northern China, flooding in central China” occurred during ~4.2–3.8 ka, triggering the migration of the prehistoric human population of the area to the central Plain of China. This population migration may have destabilized the existing social order and promoted the emergence of more complex societies, leading to the development of early civilization in north-central China.
期刊介绍:
The Holocene is a high impact, peer-reviewed journal dedicated to fundamental scientific research at the interface between the long Quaternary record and the natural and human-induced environmental processes operating at the Earth''s surface today. The Holocene emphasizes environmental change over the last ca 11 700 years.