多项式特征值问题的齐次B1模型

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
D. Tomatis, Johan Cufe
{"title":"多项式特征值问题的齐次B1模型","authors":"D. Tomatis, Johan Cufe","doi":"10.1080/23324309.2021.1885446","DOIUrl":null,"url":null,"abstract":"Abstract The homogeneous version of the B 1 leakage model is a non-linear eigenvalue problem which is generally solved iteratively by a root-finding algorithm, combined to the supplementary eigenvalue problem of the multiplication factor. This problem is widely used for ordinary cross section preparation in reactor analysis. Our work approximates this problem with a polynomial eigenvalue problem, which can be easily transformed into an ordinary linear generalized eigenproblem of size equal to the initial one multiplied by the polynomial degree used for the approximation of a transcendental function. This procedure avoids recurring to numerical root-finding methods supported by extra eigenvalue problems. The solution of the fundamental buckling with increasing approximation order is compared to the reference value obtained by inverse iterations.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"220 - 235"},"PeriodicalIF":0.7000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2021.1885446","citationCount":"0","resultStr":"{\"title\":\"The Homogeneous B 1 Model as Polynomial Eigenvalue Problem\",\"authors\":\"D. Tomatis, Johan Cufe\",\"doi\":\"10.1080/23324309.2021.1885446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The homogeneous version of the B 1 leakage model is a non-linear eigenvalue problem which is generally solved iteratively by a root-finding algorithm, combined to the supplementary eigenvalue problem of the multiplication factor. This problem is widely used for ordinary cross section preparation in reactor analysis. Our work approximates this problem with a polynomial eigenvalue problem, which can be easily transformed into an ordinary linear generalized eigenproblem of size equal to the initial one multiplied by the polynomial degree used for the approximation of a transcendental function. This procedure avoids recurring to numerical root-finding methods supported by extra eigenvalue problems. The solution of the fundamental buckling with increasing approximation order is compared to the reference value obtained by inverse iterations.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"50 1\",\"pages\":\"220 - 235\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2021.1885446\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2021.1885446\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2021.1885446","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要B1泄漏模型的齐次版本是一个非线性特征值问题,通常通过寻根算法迭代求解,并结合乘法因子的补充特征值问题。该问题广泛用于反应器分析中的普通截面制备。我们的工作用多项式特征值问题来近似这个问题,该问题可以很容易地转化为一个普通的线性广义特征值问题,其大小等于初始值乘以用于近似超越函数的多项式次数。该过程避免了重复使用由额外特征值问题支持的数值寻根方法。将近似阶数增加的基本屈曲的解与通过逆迭代获得的参考值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Homogeneous B 1 Model as Polynomial Eigenvalue Problem
Abstract The homogeneous version of the B 1 leakage model is a non-linear eigenvalue problem which is generally solved iteratively by a root-finding algorithm, combined to the supplementary eigenvalue problem of the multiplication factor. This problem is widely used for ordinary cross section preparation in reactor analysis. Our work approximates this problem with a polynomial eigenvalue problem, which can be easily transformed into an ordinary linear generalized eigenproblem of size equal to the initial one multiplied by the polynomial degree used for the approximation of a transcendental function. This procedure avoids recurring to numerical root-finding methods supported by extra eigenvalue problems. The solution of the fundamental buckling with increasing approximation order is compared to the reference value obtained by inverse iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信