{"title":"人类芽细胞染色体异常的年龄组内大变异","authors":"S. Sawarkar, D. Griffin, L. Ribustello, S. Munné","doi":"10.3390/dna1020010","DOIUrl":null,"url":null,"abstract":"Research Question: Is maternal age only a gross predictor of chromosome abnormalities in human embryos? Design: Here, we evaluated the less-studied variation in chromosome abnormality rates in embryos of patients within the same age group. Patients undergoing IVF and PGD for chromosomal abnormalities in ~127 different IVF clinics were included. PGT-A analysis was performed by a single reference laboratory using array CGH or NGS. To get an estimate of the range of abnormalities observed, the aCGH and NGS data were studied both independently and together. Results: The overall results showed the typical increase in aneuploidy rates with advancing maternal age (AMA) but extensive variability within each age group. Conclusions: Increasing aneuploidy with maternal age has been demonstrated in live births, unborn fetuses, IVF embryos and oocytes. In contrast, post-meiotic and other abnormalities that might lead to mosaicism, polyploidy and haploidy, are commonplace (around 30%), regardless of maternal age. Here we conclude that age is only a gross predictor of chromosome abnormalities in IVF embryos. In contrast to the existing standard of offering PGT-A to AMA patients, the high rate and extreme variation of chromosomal abnormalities in human embryos may warrant PGT-A for further IVF cycles even in younger age groups, especially if a history of increased levels of aneuploidy is evident. Furthermore, better indicators are needed to determine which patients are at a higher risk of producing increased levels of aneuploid embryos.","PeriodicalId":77708,"journal":{"name":"DNA (Mary Ann Liebert, Inc.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Intra-Age Group Variation in Chromosome Abnormalities in Human Blastocysts\",\"authors\":\"S. Sawarkar, D. Griffin, L. Ribustello, S. Munné\",\"doi\":\"10.3390/dna1020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research Question: Is maternal age only a gross predictor of chromosome abnormalities in human embryos? Design: Here, we evaluated the less-studied variation in chromosome abnormality rates in embryos of patients within the same age group. Patients undergoing IVF and PGD for chromosomal abnormalities in ~127 different IVF clinics were included. PGT-A analysis was performed by a single reference laboratory using array CGH or NGS. To get an estimate of the range of abnormalities observed, the aCGH and NGS data were studied both independently and together. Results: The overall results showed the typical increase in aneuploidy rates with advancing maternal age (AMA) but extensive variability within each age group. Conclusions: Increasing aneuploidy with maternal age has been demonstrated in live births, unborn fetuses, IVF embryos and oocytes. In contrast, post-meiotic and other abnormalities that might lead to mosaicism, polyploidy and haploidy, are commonplace (around 30%), regardless of maternal age. Here we conclude that age is only a gross predictor of chromosome abnormalities in IVF embryos. In contrast to the existing standard of offering PGT-A to AMA patients, the high rate and extreme variation of chromosomal abnormalities in human embryos may warrant PGT-A for further IVF cycles even in younger age groups, especially if a history of increased levels of aneuploidy is evident. Furthermore, better indicators are needed to determine which patients are at a higher risk of producing increased levels of aneuploid embryos.\",\"PeriodicalId\":77708,\"journal\":{\"name\":\"DNA (Mary Ann Liebert, Inc.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA (Mary Ann Liebert, Inc.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dna1020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA (Mary Ann Liebert, Inc.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dna1020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Intra-Age Group Variation in Chromosome Abnormalities in Human Blastocysts
Research Question: Is maternal age only a gross predictor of chromosome abnormalities in human embryos? Design: Here, we evaluated the less-studied variation in chromosome abnormality rates in embryos of patients within the same age group. Patients undergoing IVF and PGD for chromosomal abnormalities in ~127 different IVF clinics were included. PGT-A analysis was performed by a single reference laboratory using array CGH or NGS. To get an estimate of the range of abnormalities observed, the aCGH and NGS data were studied both independently and together. Results: The overall results showed the typical increase in aneuploidy rates with advancing maternal age (AMA) but extensive variability within each age group. Conclusions: Increasing aneuploidy with maternal age has been demonstrated in live births, unborn fetuses, IVF embryos and oocytes. In contrast, post-meiotic and other abnormalities that might lead to mosaicism, polyploidy and haploidy, are commonplace (around 30%), regardless of maternal age. Here we conclude that age is only a gross predictor of chromosome abnormalities in IVF embryos. In contrast to the existing standard of offering PGT-A to AMA patients, the high rate and extreme variation of chromosomal abnormalities in human embryos may warrant PGT-A for further IVF cycles even in younger age groups, especially if a history of increased levels of aneuploidy is evident. Furthermore, better indicators are needed to determine which patients are at a higher risk of producing increased levels of aneuploid embryos.