半连续纵向数据的两部分分位数回归模型:有限混合方法

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Luca Merlo, A. Maruotti, L. Petrella
{"title":"半连续纵向数据的两部分分位数回归模型:有限混合方法","authors":"Luca Merlo, A. Maruotti, L. Petrella","doi":"10.1177/1471082X21993603","DOIUrl":null,"url":null,"abstract":"This article develops a two-part finite mixture quantile regression model for semi-continuous longitudinal data. The proposed methodology allows heterogeneity sources that influence the model for the binary response variable to also influence the distribution of the positive outcomes. As is common in the quantile regression literature, estimation and inference on the model parameters are based on the asymmetric Laplace distribution. Maximum likelihood estimates are obtained through the EM algorithm without parametric assumptions on the random effects distribution. In addition, a penalized version of the EM algorithm is presented to tackle the problem of variable selection. The proposed statistical method is applied to the well-known RAND Health Insurance Experiment dataset which gives further insights on its empirical behaviour.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"22 1","pages":"485 - 508"},"PeriodicalIF":1.2000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X21993603","citationCount":"3","resultStr":"{\"title\":\"Two-part quantile regression models for semi-continuous longitudinal data: A finite mixture approach\",\"authors\":\"Luca Merlo, A. Maruotti, L. Petrella\",\"doi\":\"10.1177/1471082X21993603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops a two-part finite mixture quantile regression model for semi-continuous longitudinal data. The proposed methodology allows heterogeneity sources that influence the model for the binary response variable to also influence the distribution of the positive outcomes. As is common in the quantile regression literature, estimation and inference on the model parameters are based on the asymmetric Laplace distribution. Maximum likelihood estimates are obtained through the EM algorithm without parametric assumptions on the random effects distribution. In addition, a penalized version of the EM algorithm is presented to tackle the problem of variable selection. The proposed statistical method is applied to the well-known RAND Health Insurance Experiment dataset which gives further insights on its empirical behaviour.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\"22 1\",\"pages\":\"485 - 508\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X21993603\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X21993603\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X21993603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文为半连续纵向数据建立了一个由两部分组成的有限混合分位数回归模型。所提出的方法允许影响二元响应变量模型的异质性来源也影响积极结果的分布。正如分位数回归文献中常见的那样,对模型参数的估计和推断是基于不对称拉普拉斯分布的。最大似然估计是通过EM算法获得的,而不需要对随机效应分布进行参数假设。此外,还提出了EM算法的惩罚版本来解决变量选择问题。将所提出的统计方法应用于著名的兰德健康保险实验数据集,进一步深入了解了其实证行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-part quantile regression models for semi-continuous longitudinal data: A finite mixture approach
This article develops a two-part finite mixture quantile regression model for semi-continuous longitudinal data. The proposed methodology allows heterogeneity sources that influence the model for the binary response variable to also influence the distribution of the positive outcomes. As is common in the quantile regression literature, estimation and inference on the model parameters are based on the asymmetric Laplace distribution. Maximum likelihood estimates are obtained through the EM algorithm without parametric assumptions on the random effects distribution. In addition, a penalized version of the EM algorithm is presented to tackle the problem of variable selection. The proposed statistical method is applied to the well-known RAND Health Insurance Experiment dataset which gives further insights on its empirical behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信