计数有多余零的时间序列:使用零调整分布的贝叶斯视角

Luiz Otávio de Oliveira Pala, M. D. Carvalho, T. Sáfadi
{"title":"计数有多余零的时间序列:使用零调整分布的贝叶斯视角","authors":"Luiz Otávio de Oliveira Pala, M. D. Carvalho, T. Sáfadi","doi":"10.5433/1679-0375.2022v43n2p147","DOIUrl":null,"url":null,"abstract":"Models for count data which are temporally correlated have been studied using many conditional distributions, such as the Poisson distribution, and the insertion of different dependence structures. Nonetheless, excess of zeros and over dispersion may be observed during the counting process and need to be considered when modelling and choosing a conditional distribution. In this paper, we propose models for counting time series using zero-adjusted distributions by inserting a dependence structure following the ARMA(p, q) process on a Bayesian framework. We perform a simulation study using the proposed Bayesian analysis and analyse the monthly time series of the number of deaths due to dengue haemorrhagic fever (ICD-A91) in Brazil.","PeriodicalId":30173,"journal":{"name":"Semina Ciencias Exatas e Tecnologicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Count time series with excess zeros: A Bayesian perspective using zero-adjusted distributions\",\"authors\":\"Luiz Otávio de Oliveira Pala, M. D. Carvalho, T. Sáfadi\",\"doi\":\"10.5433/1679-0375.2022v43n2p147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models for count data which are temporally correlated have been studied using many conditional distributions, such as the Poisson distribution, and the insertion of different dependence structures. Nonetheless, excess of zeros and over dispersion may be observed during the counting process and need to be considered when modelling and choosing a conditional distribution. In this paper, we propose models for counting time series using zero-adjusted distributions by inserting a dependence structure following the ARMA(p, q) process on a Bayesian framework. We perform a simulation study using the proposed Bayesian analysis and analyse the monthly time series of the number of deaths due to dengue haemorrhagic fever (ICD-A91) in Brazil.\",\"PeriodicalId\":30173,\"journal\":{\"name\":\"Semina Ciencias Exatas e Tecnologicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semina Ciencias Exatas e Tecnologicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5433/1679-0375.2022v43n2p147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semina Ciencias Exatas e Tecnologicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5433/1679-0375.2022v43n2p147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用许多条件分布,如泊松分布和插入不同的依赖结构,研究了时间相关的计数数据模型。尽管如此,在计数过程中可能会观察到过零点和过频散,在建模和选择条件分布时需要考虑。在本文中,我们通过在贝叶斯框架上插入ARMA(p,q)过程之后的依赖结构,提出了使用零调整分布计算时间序列的模型。我们使用所提出的贝叶斯分析进行了一项模拟研究,并分析了巴西登革热出血热(ICD-A91)死亡人数的月度时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Count time series with excess zeros: A Bayesian perspective using zero-adjusted distributions
Models for count data which are temporally correlated have been studied using many conditional distributions, such as the Poisson distribution, and the insertion of different dependence structures. Nonetheless, excess of zeros and over dispersion may be observed during the counting process and need to be considered when modelling and choosing a conditional distribution. In this paper, we propose models for counting time series using zero-adjusted distributions by inserting a dependence structure following the ARMA(p, q) process on a Bayesian framework. We perform a simulation study using the proposed Bayesian analysis and analyse the monthly time series of the number of deaths due to dengue haemorrhagic fever (ICD-A91) in Brazil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信