Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu
{"title":"一类奇异Hermitian矩阵特征值反问题的溶解性存在性","authors":"Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu","doi":"10.17265/2159-5291/2019.05.001","DOIUrl":null,"url":null,"abstract":"In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solubility Existence of Inverse Eigenvalue Problem for a Class of Singular Hermitian Matrices\",\"authors\":\"Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu\",\"doi\":\"10.17265/2159-5291/2019.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.05.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solubility Existence of Inverse Eigenvalue Problem for a Class of Singular Hermitian Matrices
In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.