一类奇异Hermitian矩阵特征值反问题的溶解性存在性

Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu
{"title":"一类奇异Hermitian矩阵特征值反问题的溶解性存在性","authors":"Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu","doi":"10.17265/2159-5291/2019.05.001","DOIUrl":null,"url":null,"abstract":"In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solubility Existence of Inverse Eigenvalue Problem for a Class of Singular Hermitian Matrices\",\"authors\":\"Emmanuel Akweittey, Kwasi Baah Gyamfi, Gabriel Obed Fosu\",\"doi\":\"10.17265/2159-5291/2019.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.05.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了一类特征值反问题的秩大于或等于4的奇异厄米矩阵。具体地说,我们研究如何从一个规定的谱生成n × n的秩4和秩5的奇异厄米矩阵。在每种情况下都给出了数值例子来说明这些场景。证明了给定一个规定的谱基准并与之相乘,则n × n秩为r的奇异厄米特矩阵的特征值反问题的溶解度存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solubility Existence of Inverse Eigenvalue Problem for a Class of Singular Hermitian Matrices
In this article, we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem. Specifically, we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum. Numerical examples are presented in each case to illustrate these scenarios. It was established that given a prescribed spectral datum and it multiplies, then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信