{"title":"黑海北部夏季和冬季降水特征的两个模式实例研究","authors":"V. Efimov, A. Anisimov, O. Komarovskaya","doi":"10.22449/1573-160x-2021-6-677-690","DOIUrl":null,"url":null,"abstract":" vefim38@mail.ru Purpose . The purpose of the study is to reproduce the evolution of clouds and precipitation and to evaluate the summer and winter precipitation features in the Black Sea region and Crimea using the WRF-ARW model. Methods and Results . The results of numerical simulations of the summer and winter atmospheric precipitation in Crimea, and the corresponding comparative characteristics are presented. Based on the example of the convection case in July 2018, shown are the convective activity diurnal dynamics and its spatial features induced by the breeze circulation over Crimea. Moisture balance analysis was performed, and quantitative estimates of the summer precipitation formation mechanism are given. The case study of December 2018 precipitation caused by the cyclone and associated cold front passage highlights the feature of the winter precipitation formation mechanism that is driven by moisture advection. The formation of intense winter and summer precipitation in the Crimean Mountains was also considered. Conclusions. The characteristic feature of summer precipitation is its diurnal periodicity and internal moisture cycle. The impact of breezes leads to the localization of convective clouds and precipitation in the central regions of the peninsula. The winter precipitation-forming cloudiness in Crimea consists predominantly of stratiform clouds; the precipitation patterns are conditioned by the large-scale circulation: the external moisture cycle is of a decisive character in winter. The high-altitude mountain areas are the zones of maximum precipitation in both seasons; they play an important role in the total moisture balance research project 20-45-920017 “Quantitative estimates of precipitation in Southwestern Crimea and Sevastopol based on numerical modeling and radar observations” (financially supported by RFBR and the Sevastopol municipality) and state task No. 0827-2021-0002 “Fundamental studies of the interaction processes in the ocean-atmosphere system conditioning the regional spatial-temporal variability of natural environment","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Features of Summer and Winter Precipitation in the Northern Part of the Black Sea Region: Two Model Case Studies\",\"authors\":\"V. Efimov, A. Anisimov, O. Komarovskaya\",\"doi\":\"10.22449/1573-160x-2021-6-677-690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" vefim38@mail.ru Purpose . The purpose of the study is to reproduce the evolution of clouds and precipitation and to evaluate the summer and winter precipitation features in the Black Sea region and Crimea using the WRF-ARW model. Methods and Results . The results of numerical simulations of the summer and winter atmospheric precipitation in Crimea, and the corresponding comparative characteristics are presented. Based on the example of the convection case in July 2018, shown are the convective activity diurnal dynamics and its spatial features induced by the breeze circulation over Crimea. Moisture balance analysis was performed, and quantitative estimates of the summer precipitation formation mechanism are given. The case study of December 2018 precipitation caused by the cyclone and associated cold front passage highlights the feature of the winter precipitation formation mechanism that is driven by moisture advection. The formation of intense winter and summer precipitation in the Crimean Mountains was also considered. Conclusions. The characteristic feature of summer precipitation is its diurnal periodicity and internal moisture cycle. The impact of breezes leads to the localization of convective clouds and precipitation in the central regions of the peninsula. The winter precipitation-forming cloudiness in Crimea consists predominantly of stratiform clouds; the precipitation patterns are conditioned by the large-scale circulation: the external moisture cycle is of a decisive character in winter. The high-altitude mountain areas are the zones of maximum precipitation in both seasons; they play an important role in the total moisture balance research project 20-45-920017 “Quantitative estimates of precipitation in Southwestern Crimea and Sevastopol based on numerical modeling and radar observations” (financially supported by RFBR and the Sevastopol municipality) and state task No. 0827-2021-0002 “Fundamental studies of the interaction processes in the ocean-atmosphere system conditioning the regional spatial-temporal variability of natural environment\",\"PeriodicalId\":43550,\"journal\":{\"name\":\"Physical Oceanography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22449/1573-160x-2021-6-677-690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/1573-160x-2021-6-677-690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Features of Summer and Winter Precipitation in the Northern Part of the Black Sea Region: Two Model Case Studies
vefim38@mail.ru Purpose . The purpose of the study is to reproduce the evolution of clouds and precipitation and to evaluate the summer and winter precipitation features in the Black Sea region and Crimea using the WRF-ARW model. Methods and Results . The results of numerical simulations of the summer and winter atmospheric precipitation in Crimea, and the corresponding comparative characteristics are presented. Based on the example of the convection case in July 2018, shown are the convective activity diurnal dynamics and its spatial features induced by the breeze circulation over Crimea. Moisture balance analysis was performed, and quantitative estimates of the summer precipitation formation mechanism are given. The case study of December 2018 precipitation caused by the cyclone and associated cold front passage highlights the feature of the winter precipitation formation mechanism that is driven by moisture advection. The formation of intense winter and summer precipitation in the Crimean Mountains was also considered. Conclusions. The characteristic feature of summer precipitation is its diurnal periodicity and internal moisture cycle. The impact of breezes leads to the localization of convective clouds and precipitation in the central regions of the peninsula. The winter precipitation-forming cloudiness in Crimea consists predominantly of stratiform clouds; the precipitation patterns are conditioned by the large-scale circulation: the external moisture cycle is of a decisive character in winter. The high-altitude mountain areas are the zones of maximum precipitation in both seasons; they play an important role in the total moisture balance research project 20-45-920017 “Quantitative estimates of precipitation in Southwestern Crimea and Sevastopol based on numerical modeling and radar observations” (financially supported by RFBR and the Sevastopol municipality) and state task No. 0827-2021-0002 “Fundamental studies of the interaction processes in the ocean-atmosphere system conditioning the regional spatial-temporal variability of natural environment