Kyle J. Emich, M. McCourt, Li Lu, Amanda J. Ferguson, R. Peterson
{"title":"重新审视团队组成:扩展团队成员属性对齐方法,以考虑两个以上属性的模式","authors":"Kyle J. Emich, M. McCourt, Li Lu, Amanda J. Ferguson, R. Peterson","doi":"10.1177/10944281231166656","DOIUrl":null,"url":null,"abstract":"The attribute alignment approach to team composition allows researchers to assess variation in team member attributes, which occurs simultaneously within and across individual team members. This approach facilitates the development of theory testing the proposition that individual members are themselves complex systems comprised of multiple attributes and that the configuration of those attributes affects team-level processes and outcomes. Here, we expand this approach, originally developed for two attributes, by describing three ways researchers may capture the alignment of three or more team member attributes: (a) a geometric approach, (b) a physical approach accentuating ideal alignment, and (c) an algebraic approach accentuating the direction (as opposed to magnitude) of alignment. We also provide examples of the research questions each could answer and compare the methods empirically using a synthetic dataset assessing 100 teams of three to seven members across four attributes. Then, we provide a practical guide to selecting an appropriate method when considering team-member attribute patterns by answering several common questions regarding applying attribute alignment. Finally, we provide code ( https://github.com/kjem514/Attribute-Alignment-Code ) and apply this approach to a field data set in our appendices.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Team Composition Revisited: Expanding the Team Member Attribute Alignment Approach to Consider Patterns of More Than Two Attributes\",\"authors\":\"Kyle J. Emich, M. McCourt, Li Lu, Amanda J. Ferguson, R. Peterson\",\"doi\":\"10.1177/10944281231166656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The attribute alignment approach to team composition allows researchers to assess variation in team member attributes, which occurs simultaneously within and across individual team members. This approach facilitates the development of theory testing the proposition that individual members are themselves complex systems comprised of multiple attributes and that the configuration of those attributes affects team-level processes and outcomes. Here, we expand this approach, originally developed for two attributes, by describing three ways researchers may capture the alignment of three or more team member attributes: (a) a geometric approach, (b) a physical approach accentuating ideal alignment, and (c) an algebraic approach accentuating the direction (as opposed to magnitude) of alignment. We also provide examples of the research questions each could answer and compare the methods empirically using a synthetic dataset assessing 100 teams of three to seven members across four attributes. Then, we provide a practical guide to selecting an appropriate method when considering team-member attribute patterns by answering several common questions regarding applying attribute alignment. Finally, we provide code ( https://github.com/kjem514/Attribute-Alignment-Code ) and apply this approach to a field data set in our appendices.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281231166656\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281231166656","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Team Composition Revisited: Expanding the Team Member Attribute Alignment Approach to Consider Patterns of More Than Two Attributes
The attribute alignment approach to team composition allows researchers to assess variation in team member attributes, which occurs simultaneously within and across individual team members. This approach facilitates the development of theory testing the proposition that individual members are themselves complex systems comprised of multiple attributes and that the configuration of those attributes affects team-level processes and outcomes. Here, we expand this approach, originally developed for two attributes, by describing three ways researchers may capture the alignment of three or more team member attributes: (a) a geometric approach, (b) a physical approach accentuating ideal alignment, and (c) an algebraic approach accentuating the direction (as opposed to magnitude) of alignment. We also provide examples of the research questions each could answer and compare the methods empirically using a synthetic dataset assessing 100 teams of three to seven members across four attributes. Then, we provide a practical guide to selecting an appropriate method when considering team-member attribute patterns by answering several common questions regarding applying attribute alignment. Finally, we provide code ( https://github.com/kjem514/Attribute-Alignment-Code ) and apply this approach to a field data set in our appendices.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.