具有重尾创新的多域阈值AR模型的尾部行为

IF 0.7 4区 经济学 Q3 ECONOMICS
Jiazhu Pan, Yali He
{"title":"具有重尾创新的多域阈值AR模型的尾部行为","authors":"Jiazhu Pan, Yali He","doi":"10.1515/snde-2020-0071","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the tail behaviours of the stationary distribution of multiple-regime threshold AR models with multiple heavy-tailed innovations. It is shown that the marginal tail probability has the same order as that of the innovation with the heaviest tail. Other new results in this paper include the geometric ergodicity and the tail dependence of TAR models with multiple heavy-tailed innovations.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"377 - 395"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tail behaviours of multiple-regime threshold AR models with heavy-tailed innovations\",\"authors\":\"Jiazhu Pan, Yali He\",\"doi\":\"10.1515/snde-2020-0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the tail behaviours of the stationary distribution of multiple-regime threshold AR models with multiple heavy-tailed innovations. It is shown that the marginal tail probability has the same order as that of the innovation with the heaviest tail. Other new results in this paper include the geometric ergodicity and the tail dependence of TAR models with multiple heavy-tailed innovations.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"27 1\",\"pages\":\"377 - 395\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2020-0071\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0071","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了具有多重重尾创新的多状态阈值AR模型平稳分布的尾部行为。结果表明,边际尾部概率与尾部最重的创新具有相同的阶数。本文中的其他新结果包括具有多重重尾创新的TAR模型的几何遍历性和尾部依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail behaviours of multiple-regime threshold AR models with heavy-tailed innovations
Abstract This paper studies the tail behaviours of the stationary distribution of multiple-regime threshold AR models with multiple heavy-tailed innovations. It is shown that the marginal tail probability has the same order as that of the innovation with the heaviest tail. Other new results in this paper include the geometric ergodicity and the tail dependence of TAR models with multiple heavy-tailed innovations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信