基于时间序列生成对抗网络的趋势感知数据推断

IF 0.8 Q4 Computer Science
Han Li, Zhenxiong Liu, Jixiang Niu, Zhongguo Yang, Sikandar Ali
{"title":"基于时间序列生成对抗网络的趋势感知数据推断","authors":"Han Li, Zhenxiong Liu, Jixiang Niu, Zhongguo Yang, Sikandar Ali","doi":"10.4018/ijitsa.325212","DOIUrl":null,"url":null,"abstract":"To solve the problems of generative adversarial network (GAN)-based imputation method for time series, which are ignoring the implied trends in data and using multi-stage training that may lead to high training complexity, this article proposes a trend-aware data imputation method based on GAN (TrendGAN). It implements an end-to-end training using de-noising auto-encoder (DAE). It also uses bidirectional gated recurrent unit (Bi-GRU) in the generator model to consider the bi-directional characteristics and supplement the features lost by de-noising auto-encoder and improves the discriminator's ability using Bi-GRU and hint vector. The authors conducted experiments on four real datasets. The results showed that all components introduced into the method contribute to enhancing the imputation accuracy, and the MSE values of TrendGAN are much lower than those of baseline methods when dealing with time series with random and continuous missing patterns. That is, TrendGAN is suitable for data imputation in complex scenarios with two missing patterns coexist, such as electric power and transportation.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series\",\"authors\":\"Han Li, Zhenxiong Liu, Jixiang Niu, Zhongguo Yang, Sikandar Ali\",\"doi\":\"10.4018/ijitsa.325212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problems of generative adversarial network (GAN)-based imputation method for time series, which are ignoring the implied trends in data and using multi-stage training that may lead to high training complexity, this article proposes a trend-aware data imputation method based on GAN (TrendGAN). It implements an end-to-end training using de-noising auto-encoder (DAE). It also uses bidirectional gated recurrent unit (Bi-GRU) in the generator model to consider the bi-directional characteristics and supplement the features lost by de-noising auto-encoder and improves the discriminator's ability using Bi-GRU and hint vector. The authors conducted experiments on four real datasets. The results showed that all components introduced into the method contribute to enhancing the imputation accuracy, and the MSE values of TrendGAN are much lower than those of baseline methods when dealing with time series with random and continuous missing patterns. That is, TrendGAN is suitable for data imputation in complex scenarios with two missing patterns coexist, such as electric power and transportation.\",\"PeriodicalId\":52019,\"journal\":{\"name\":\"International Journal of Information Technologies and Systems Approach\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technologies and Systems Approach\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitsa.325212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.325212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

为了解决基于生成对抗性网络(GAN)的时间序列插补方法忽略数据中隐含的趋势,使用多阶段训练可能导致训练复杂度高的问题,本文提出了一种基于GAN的趋势感知数据插补方法(TrendGAN)。它使用去噪自动编码器(DAE)实现了端到端的训练。它还在生成器模型中使用双向门控递归单元(Bi-GRU)来考虑双向特性,并补充去噪自动编码器丢失的特性,并使用Bi-GRU和提示向量来提高鉴别器的能力。作者在四个真实数据集上进行了实验。结果表明,该方法引入的所有成分都有助于提高插补精度,并且在处理具有随机和连续缺失模式的时间序列时,TrendGAN的MSE值远低于基线方法。也就是说,TrendGAN适用于电力和交通等两种缺失模式共存的复杂场景中的数据插补。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series
To solve the problems of generative adversarial network (GAN)-based imputation method for time series, which are ignoring the implied trends in data and using multi-stage training that may lead to high training complexity, this article proposes a trend-aware data imputation method based on GAN (TrendGAN). It implements an end-to-end training using de-noising auto-encoder (DAE). It also uses bidirectional gated recurrent unit (Bi-GRU) in the generator model to consider the bi-directional characteristics and supplement the features lost by de-noising auto-encoder and improves the discriminator's ability using Bi-GRU and hint vector. The authors conducted experiments on four real datasets. The results showed that all components introduced into the method contribute to enhancing the imputation accuracy, and the MSE values of TrendGAN are much lower than those of baseline methods when dealing with time series with random and continuous missing patterns. That is, TrendGAN is suitable for data imputation in complex scenarios with two missing patterns coexist, such as electric power and transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
12.50%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信