梯度wag2吸收子模块

Q3 Mathematics
K. Al-Zoubi, Mariam Al-Azaizeh
{"title":"梯度wag2吸收子模块","authors":"K. Al-Zoubi, Mariam Al-Azaizeh","doi":"10.30970/ms.58.1.13-19","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce the concept of graded $WAG2$-absorbing submodule. A number of results concerning of these classes of graded submodules and their homogeneous components are given. \nLet $N=\\bigoplus _{h\\in G}N_{h}$ be a graded submodule of $M$ and $h\\in G.$ We say that $N_{h}$ is a $h$-$WAG2$-absorbing submodule of the $R_{e}$-module $M_{h}$ if $N_{h}\\neq M_{h}$; and whenever $r_{e},s_{e}\\in R_{e}$ and $m_{h}\\in M_{h}$ with $0\\neq r_{e}s_{e}m_{h}\\in N_{h}$, then either $%r_{e}^{i}m_{h}\\in N_{h}$ or $s_{e}^{j}m_{h}\\in N_{h}$ or $%(r_{e}s_{e})^{k}\\in (N_{h}:_{R_{e}}M_{h})$ for some $i,$ $j,$ $k$ $\\in\\mathbb{N}.$ We say that $N$ is {a graded }$WAG2${-absorbing submodule of }$M$ if $N\\neq M$; and whenever $r_{g},s_{h}\\in h(R)$ and $%m_{\\lambda }\\in h(M)$ with $0\\neq r_{g}s_{h}m_{\\lambda }\\in N$, then either $r_{g}^{i}m_{\\lambda }\\in N$ or $s_{h}^{j}m_{\\lambda }\\in N$ or $%(r_{g}s_{h})^{k}\\in (N:_{R}M)$ for some $i,$ $j,$ $k$ $\\in \\mathbb{N}.$ In particular, the following assertions have been proved: \nLet $R$ be a $G$-graded ring, $M$ a graded cyclic $R$-module with $%Gr((0:_{R}M))=0$ and $N$ a graded submodule of $M.$ If $N$ is a graded $WAG2$% {-absorbing submodule of }$M,$ then\\linebreak $Gr((N:_{R}M))$ is a graded $WAG2$% -absorbing ideal of $R$ (Theorem 4).Let $R_{1}$ and $R_{2}$ be a $G$-graded rings. Let $R=R_{1}\\bigoplus R_{2}$ be a $G$-graded ring and $M=M_{1}\\bigoplus M_{2}$ a graded $R$-module. Let $N_{1},$ $N_{2}$ be a proper graded submodule of $M_{1}$, $M_{2}$ respectively. If $N=N_{1}\\bigoplus N_{2}$ is a graded $WAG2$-absorbing submodule of $M,$ then $N_{1}$ and $N_{2}$ are graded weakly primary submodule of $R_{1}$-module $M_{1},$ $R_{2}$-module $M_{2},$ respectively. Moreover, If $N_{2}\\neq 0$ $(N_{1}\\neq 0),$ then $N_{1}$ is a graded weak primary submodule of $R_{1}$-module $M_{1}$ $(N_{2}$ is a graded weak primary submodule of $R_{2}$-module  $M_{2})$ (Theorem 7).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On graded WAG2-absorbing submodule\",\"authors\":\"K. Al-Zoubi, Mariam Al-Azaizeh\",\"doi\":\"10.30970/ms.58.1.13-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce the concept of graded $WAG2$-absorbing submodule. A number of results concerning of these classes of graded submodules and their homogeneous components are given. \\nLet $N=\\\\bigoplus _{h\\\\in G}N_{h}$ be a graded submodule of $M$ and $h\\\\in G.$ We say that $N_{h}$ is a $h$-$WAG2$-absorbing submodule of the $R_{e}$-module $M_{h}$ if $N_{h}\\\\neq M_{h}$; and whenever $r_{e},s_{e}\\\\in R_{e}$ and $m_{h}\\\\in M_{h}$ with $0\\\\neq r_{e}s_{e}m_{h}\\\\in N_{h}$, then either $%r_{e}^{i}m_{h}\\\\in N_{h}$ or $s_{e}^{j}m_{h}\\\\in N_{h}$ or $%(r_{e}s_{e})^{k}\\\\in (N_{h}:_{R_{e}}M_{h})$ for some $i,$ $j,$ $k$ $\\\\in\\\\mathbb{N}.$ We say that $N$ is {a graded }$WAG2${-absorbing submodule of }$M$ if $N\\\\neq M$; and whenever $r_{g},s_{h}\\\\in h(R)$ and $%m_{\\\\lambda }\\\\in h(M)$ with $0\\\\neq r_{g}s_{h}m_{\\\\lambda }\\\\in N$, then either $r_{g}^{i}m_{\\\\lambda }\\\\in N$ or $s_{h}^{j}m_{\\\\lambda }\\\\in N$ or $%(r_{g}s_{h})^{k}\\\\in (N:_{R}M)$ for some $i,$ $j,$ $k$ $\\\\in \\\\mathbb{N}.$ In particular, the following assertions have been proved: \\nLet $R$ be a $G$-graded ring, $M$ a graded cyclic $R$-module with $%Gr((0:_{R}M))=0$ and $N$ a graded submodule of $M.$ If $N$ is a graded $WAG2$% {-absorbing submodule of }$M,$ then\\\\linebreak $Gr((N:_{R}M))$ is a graded $WAG2$% -absorbing ideal of $R$ (Theorem 4).Let $R_{1}$ and $R_{2}$ be a $G$-graded rings. Let $R=R_{1}\\\\bigoplus R_{2}$ be a $G$-graded ring and $M=M_{1}\\\\bigoplus M_{2}$ a graded $R$-module. Let $N_{1},$ $N_{2}$ be a proper graded submodule of $M_{1}$, $M_{2}$ respectively. If $N=N_{1}\\\\bigoplus N_{2}$ is a graded $WAG2$-absorbing submodule of $M,$ then $N_{1}$ and $N_{2}$ are graded weakly primary submodule of $R_{1}$-module $M_{1},$ $R_{2}$-module $M_{2},$ respectively. Moreover, If $N_{2}\\\\neq 0$ $(N_{1}\\\\neq 0),$ then $N_{1}$ is a graded weak primary submodule of $R_{1}$-module $M_{1}$ $(N_{2}$ is a graded weak primary submodule of $R_{2}$-module  $M_{2})$ (Theorem 7).\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.1.13-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.13-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让$G$是一个具有身份$e$的群。设$R$是$G$分次交换环,$M$是$R$分次模。本文引入了分级$WAG2$吸收子模的概念。给出了这类分次模及其齐次分量的若干结果。设G}N_{h}$中的$N=\bigoplus_{h\是G}中$M$和$h\的分等子模。我们说$N_{h}$是$R_{e}$-模$M_{h}$的$h$-$WAG2$-吸收子模,如果$N_;并且每当r_{e}$中的$r_{e}、s_{e}\和m_{h}$的$m_{h}\具有$0\neq r时_{e}s_{e}m_{h} \在N_{h}$中,则$%r_{e}^{i}m_{h} \在N_{h}$或$s_{e}中^{j}m_{h} \在N_{h}$或$%(r_{e}s_{e} )^{k}\in(N_{h}:_{R_{e}}M_{h})$对于一些$i,$$j,$$k$$\in\mathbb{N}.$我们说$N$是{一个分级的}$WAG2$的{-吸收子模}$M$,如果$N\neqM$;并且每当h(r)$中的$r_{g},s_{h}\和h(m)$中带有$0\neq r的$%m_{\lambda}\_{g}s_{h}m_{\lambda}\在N$中,然后$r_{g}^{i}m_{\lambda}\以N$或$s_{h}表示^{j}m_{\lambda}\在N$或$%(r_{g}s_{h} )^{k}\ in(N:_{R}M)$对于一些$i、$$j、$$k$$\in\mathbb{N}.$特别地,以下断言已经被证明:设$R$是$G$-分次环,$M$是具有$%Gr((0:_{R}M))=0$和$N$是$M$的分级子模块如果$N$是}$M的分级$WAG2$%{-吸收子模块,$则\linebreak$Gr((N:_{R}M))$是$R$的有阶$WAG2$%-吸收理想(定理4)。设$R_{1}$和$R_{2}$是一个$G$分次环。设$R=R_{1}\bigoplus R_{2}$为$G$分次环,$M=M_。设$N_{1},$$N_{2}$分别是$M_{1}$,$M_{2}$的适当分等子模。如果$N=N_{1}\bigoplus N_{2}$是$M的分次$WAG2$吸收子模,$则$N_{1}$和$N_{2}美元分别是$R_{1}$-模$M_{}、$R_。此外,如果$N_{2}\neq0$$(N_{1}\neq 0),$则$N_{1}$是$R_{1}$-模$M_{1}$$的分次弱初等子模(N_{2}$是$R_{2}$-模块$M_{2})$的分次软弱初等子模)(定理7)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On graded WAG2-absorbing submodule
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce the concept of graded $WAG2$-absorbing submodule. A number of results concerning of these classes of graded submodules and their homogeneous components are given. Let $N=\bigoplus _{h\in G}N_{h}$ be a graded submodule of $M$ and $h\in G.$ We say that $N_{h}$ is a $h$-$WAG2$-absorbing submodule of the $R_{e}$-module $M_{h}$ if $N_{h}\neq M_{h}$; and whenever $r_{e},s_{e}\in R_{e}$ and $m_{h}\in M_{h}$ with $0\neq r_{e}s_{e}m_{h}\in N_{h}$, then either $%r_{e}^{i}m_{h}\in N_{h}$ or $s_{e}^{j}m_{h}\in N_{h}$ or $%(r_{e}s_{e})^{k}\in (N_{h}:_{R_{e}}M_{h})$ for some $i,$ $j,$ $k$ $\in\mathbb{N}.$ We say that $N$ is {a graded }$WAG2${-absorbing submodule of }$M$ if $N\neq M$; and whenever $r_{g},s_{h}\in h(R)$ and $%m_{\lambda }\in h(M)$ with $0\neq r_{g}s_{h}m_{\lambda }\in N$, then either $r_{g}^{i}m_{\lambda }\in N$ or $s_{h}^{j}m_{\lambda }\in N$ or $%(r_{g}s_{h})^{k}\in (N:_{R}M)$ for some $i,$ $j,$ $k$ $\in \mathbb{N}.$ In particular, the following assertions have been proved: Let $R$ be a $G$-graded ring, $M$ a graded cyclic $R$-module with $%Gr((0:_{R}M))=0$ and $N$ a graded submodule of $M.$ If $N$ is a graded $WAG2$% {-absorbing submodule of }$M,$ then\linebreak $Gr((N:_{R}M))$ is a graded $WAG2$% -absorbing ideal of $R$ (Theorem 4).Let $R_{1}$ and $R_{2}$ be a $G$-graded rings. Let $R=R_{1}\bigoplus R_{2}$ be a $G$-graded ring and $M=M_{1}\bigoplus M_{2}$ a graded $R$-module. Let $N_{1},$ $N_{2}$ be a proper graded submodule of $M_{1}$, $M_{2}$ respectively. If $N=N_{1}\bigoplus N_{2}$ is a graded $WAG2$-absorbing submodule of $M,$ then $N_{1}$ and $N_{2}$ are graded weakly primary submodule of $R_{1}$-module $M_{1},$ $R_{2}$-module $M_{2},$ respectively. Moreover, If $N_{2}\neq 0$ $(N_{1}\neq 0),$ then $N_{1}$ is a graded weak primary submodule of $R_{1}$-module $M_{1}$ $(N_{2}$ is a graded weak primary submodule of $R_{2}$-module  $M_{2})$ (Theorem 7).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信