Drinfeld-Jimbo代数的Banach空间表示及其复解析形式

IF 0.6 Q3 MATHEMATICS
O. Aristov
{"title":"Drinfeld-Jimbo代数的Banach空间表示及其复解析形式","authors":"O. Aristov","doi":"10.1215/00192082-10592466","DOIUrl":null,"url":null,"abstract":"We prove that every non-degenerate Banach space representation of the Drinfeld-Jimbo algebra $U_q(\\mathfrak{g})$ of a semisimple complex Lie algebra $\\mathfrak{g}$ is finite dimensional when $|q|\\ne 1$. As a corollary, we find an explicit form of the Arens-Michael envelope of $U_q(\\mathfrak{g})$, which is similar to that of $U(\\mathfrak{g})$ obtained by Joseph Taylor in 70s. In the case when $\\mathfrak{g}=\\mathfrak{s}\\mathfrak{l}_2$, we also consider the representation theory of the corresponding analytic form $\\widetilde U(\\mathfrak{s}\\mathfrak{l}_2)_\\hbar$ (with $e^\\hbar=q$) and show that it is simpler than for $U_q(\\mathfrak{s}\\mathfrak{l}_2)$. For example, all irreducible continuous representations of $\\widetilde U(\\mathfrak{s}\\mathfrak{l}_2)_\\hbar$ are finite dimensional for every admissible value of the complex parameter $\\hbar$, while $U_q(\\mathfrak{s}\\mathfrak{l}_2)$ has a topologically irreducible infinite-dimensional representation when $|q|= 1$ and $q$ is not a root of unity.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Banach space representations of Drinfeld–Jimbo algebras and their complex-analytic forms\",\"authors\":\"O. Aristov\",\"doi\":\"10.1215/00192082-10592466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every non-degenerate Banach space representation of the Drinfeld-Jimbo algebra $U_q(\\\\mathfrak{g})$ of a semisimple complex Lie algebra $\\\\mathfrak{g}$ is finite dimensional when $|q|\\\\ne 1$. As a corollary, we find an explicit form of the Arens-Michael envelope of $U_q(\\\\mathfrak{g})$, which is similar to that of $U(\\\\mathfrak{g})$ obtained by Joseph Taylor in 70s. In the case when $\\\\mathfrak{g}=\\\\mathfrak{s}\\\\mathfrak{l}_2$, we also consider the representation theory of the corresponding analytic form $\\\\widetilde U(\\\\mathfrak{s}\\\\mathfrak{l}_2)_\\\\hbar$ (with $e^\\\\hbar=q$) and show that it is simpler than for $U_q(\\\\mathfrak{s}\\\\mathfrak{l}_2)$. For example, all irreducible continuous representations of $\\\\widetilde U(\\\\mathfrak{s}\\\\mathfrak{l}_2)_\\\\hbar$ are finite dimensional for every admissible value of the complex parameter $\\\\hbar$, while $U_q(\\\\mathfrak{s}\\\\mathfrak{l}_2)$ has a topologically irreducible infinite-dimensional representation when $|q|= 1$ and $q$ is not a root of unity.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10592466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10592466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了半单复李代数$\mathfrak{g}的Drinfeld-Jimbo代数$U_q(\mathfrak{g})$的每个非退化Banach空间表示在$|q|\ne1$时是有限维的。作为推论,我们发现$U_q(\mathfrak{g})$的Arens-Michael包络的显式形式,它类似于Joseph Taylor在70年代获得的$U(\mathfrak{g})$。在$\mathfrak{g}=\mathfra克{s}\mathfrak的情况下{l}_2$,我们还考虑了相应的分析形式$\widetilde U(\mathfrak{s}\mathfrak{l}_2)_\hbar$(带有$e^\hbar=q$),并表明它比$U_q(\mathfrak{s}\mathfra克{l}_2)$。例如,$\widetilde U(\mathfrak{s}\mathfrak{l}_2)_\hbar$对于复参数$\hbar$的每个可容许值都是有限维的,而$U_q(\mathfrak{s}\mathfra克{l}_2)当$|q|=1$并且$q$不是单位根时,$具有拓扑上不可约的无限维表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach space representations of Drinfeld–Jimbo algebras and their complex-analytic forms
We prove that every non-degenerate Banach space representation of the Drinfeld-Jimbo algebra $U_q(\mathfrak{g})$ of a semisimple complex Lie algebra $\mathfrak{g}$ is finite dimensional when $|q|\ne 1$. As a corollary, we find an explicit form of the Arens-Michael envelope of $U_q(\mathfrak{g})$, which is similar to that of $U(\mathfrak{g})$ obtained by Joseph Taylor in 70s. In the case when $\mathfrak{g}=\mathfrak{s}\mathfrak{l}_2$, we also consider the representation theory of the corresponding analytic form $\widetilde U(\mathfrak{s}\mathfrak{l}_2)_\hbar$ (with $e^\hbar=q$) and show that it is simpler than for $U_q(\mathfrak{s}\mathfrak{l}_2)$. For example, all irreducible continuous representations of $\widetilde U(\mathfrak{s}\mathfrak{l}_2)_\hbar$ are finite dimensional for every admissible value of the complex parameter $\hbar$, while $U_q(\mathfrak{s}\mathfrak{l}_2)$ has a topologically irreducible infinite-dimensional representation when $|q|= 1$ and $q$ is not a root of unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信