{"title":"*素环中置换n-加性映射的迹","authors":"A. Ali, K. Kumar","doi":"10.22124/JART.2020.16288.1200","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that a nonzero square closed $*$-Lie ideal $U$ of a $*$-prime ring $Re$ of Char $Re$ $neq$ $(2^{n}-2)$ is central, if one of the following holds: $(i)delta(x)delta(y)mp xcirc yin Z(Re),$ $(ii)[x,y]-delta(xy)delta(yx)in Z(Re),$ $(iii)delta(x)circ delta(y)mp [x,y]in Z(Re),$ $(iv)delta(x)circ delta(y)mp xyin Z(Re),$ $(v) delta(x)delta(y)mp yxin Z(Re),$ where $delta$ is the trace of $n$-additive map $digamma: underbrace{Retimes Retimes....times Re}_{n-times}longrightarrow Re$,$~mbox{for all}~ x,yin U$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"8 1","pages":"9-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traces of permuting n-additive mappings in *-prime rings\",\"authors\":\"A. Ali, K. Kumar\",\"doi\":\"10.22124/JART.2020.16288.1200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that a nonzero square closed $*$-Lie ideal $U$ of a $*$-prime ring $Re$ of Char $Re$ $neq$ $(2^{n}-2)$ is central, if one of the following holds: $(i)delta(x)delta(y)mp xcirc yin Z(Re),$ $(ii)[x,y]-delta(xy)delta(yx)in Z(Re),$ $(iii)delta(x)circ delta(y)mp [x,y]in Z(Re),$ $(iv)delta(x)circ delta(y)mp xyin Z(Re),$ $(v) delta(x)delta(y)mp yxin Z(Re),$ where $delta$ is the trace of $n$-additive map $digamma: underbrace{Retimes Retimes....times Re}_{n-times}longrightarrow Re$,$~mbox{for all}~ x,yin U$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"8 1\",\"pages\":\"9-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2020.16288.1200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2020.16288.1200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Traces of permuting n-additive mappings in *-prime rings
In this paper, we prove that a nonzero square closed $*$-Lie ideal $U$ of a $*$-prime ring $Re$ of Char $Re$ $neq$ $(2^{n}-2)$ is central, if one of the following holds: $(i)delta(x)delta(y)mp xcirc yin Z(Re),$ $(ii)[x,y]-delta(xy)delta(yx)in Z(Re),$ $(iii)delta(x)circ delta(y)mp [x,y]in Z(Re),$ $(iv)delta(x)circ delta(y)mp xyin Z(Re),$ $(v) delta(x)delta(y)mp yxin Z(Re),$ where $delta$ is the trace of $n$-additive map $digamma: underbrace{Retimes Retimes....times Re}_{n-times}longrightarrow Re$,$~mbox{for all}~ x,yin U$.