Jason Curran, Romina Gaburro, C. Nolan, E. Somersalo
{"title":"时谐漫射光学层析成像:Hölder在边界处介质光学性质导数的稳定性","authors":"Jason Curran, Romina Gaburro, C. Nolan, E. Somersalo","doi":"10.3934/ipi.2022044","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega\\subset\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id=\"M4\">\\begin{document}$ n\\geq 3 $\\end{document}</tex-math></inline-formula>, under the so-called <i>diffusion approximation</i>. Assuming that the <i>scattering coefficient</i> <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mu_s $\\end{document}</tex-math></inline-formula> is known, we prove Hölder stability of the derivatives of any order of the <i>absorption coefficient</i> <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mu_a $\\end{document}</tex-math></inline-formula> at the boundary <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\partial\\Omega $\\end{document}</tex-math></inline-formula> in terms of the measurements, in the time-harmonic case, where the anisotropic medium <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is interrogated with an input field that is modulated with a fixed harmonic frequency <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\omega = \\frac{k}{c} $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M10\">\\begin{document}$ c $\\end{document}</tex-math></inline-formula> is the speed of light and <inline-formula><tex-math id=\"M11\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> is the wave number. The stability estimates are established under suitable conditions that include a range of variability for <inline-formula><tex-math id=\"M12\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:<a href=\"http://dx.doi.org/10.1080/00036811.2020.1758314\" target=\"_blank\">10.1080/00036811.2020.1758314</a>, where a Lipschitz type stability estimate of <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\mu_a $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\partial\\Omega $\\end{document}</tex-math></inline-formula> was established in terms of the measurements.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary\",\"authors\":\"Jason Curran, Romina Gaburro, C. Nolan, E. Somersalo\",\"doi\":\"10.3934/ipi.2022044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\Omega\\\\subset\\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ n\\\\geq 3 $\\\\end{document}</tex-math></inline-formula>, under the so-called <i>diffusion approximation</i>. Assuming that the <i>scattering coefficient</i> <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mu_s $\\\\end{document}</tex-math></inline-formula> is known, we prove Hölder stability of the derivatives of any order of the <i>absorption coefficient</i> <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\mu_a $\\\\end{document}</tex-math></inline-formula> at the boundary <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\partial\\\\Omega $\\\\end{document}</tex-math></inline-formula> in terms of the measurements, in the time-harmonic case, where the anisotropic medium <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\Omega $\\\\end{document}</tex-math></inline-formula> is interrogated with an input field that is modulated with a fixed harmonic frequency <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\omega = \\\\frac{k}{c} $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ c $\\\\end{document}</tex-math></inline-formula> is the speed of light and <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ k $\\\\end{document}</tex-math></inline-formula> is the wave number. The stability estimates are established under suitable conditions that include a range of variability for <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ k $\\\\end{document}</tex-math></inline-formula> and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:<a href=\\\"http://dx.doi.org/10.1080/00036811.2020.1758314\\\" target=\\\"_blank\\\">10.1080/00036811.2020.1758314</a>, where a Lipschitz type stability estimate of <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\mu_a $\\\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ \\\\partial\\\\Omega $\\\\end{document}</tex-math></inline-formula> was established in terms of the measurements.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium \begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}, with \begin{document}$ n\geq 3 $\end{document}, under the so-called diffusion approximation. Assuming that the scattering coefficient \begin{document}$ \mu_s $\end{document} is known, we prove Hölder stability of the derivatives of any order of the absorption coefficient \begin{document}$ \mu_a $\end{document} at the boundary \begin{document}$ \partial\Omega $\end{document} in terms of the measurements, in the time-harmonic case, where the anisotropic medium \begin{document}$ \Omega $\end{document} is interrogated with an input field that is modulated with a fixed harmonic frequency \begin{document}$ \omega = \frac{k}{c} $\end{document}, where \begin{document}$ c $\end{document} is the speed of light and \begin{document}$ k $\end{document} is the wave number. The stability estimates are established under suitable conditions that include a range of variability for \begin{document}$ k $\end{document} and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:10.1080/00036811.2020.1758314, where a Lipschitz type stability estimate of \begin{document}$ \mu_a $\end{document} on \begin{document}$ \partial\Omega $\end{document} was established in terms of the measurements.
Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary
We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium \begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}, with \begin{document}$ n\geq 3 $\end{document}, under the so-called diffusion approximation. Assuming that the scattering coefficient\begin{document}$ \mu_s $\end{document} is known, we prove Hölder stability of the derivatives of any order of the absorption coefficient\begin{document}$ \mu_a $\end{document} at the boundary \begin{document}$ \partial\Omega $\end{document} in terms of the measurements, in the time-harmonic case, where the anisotropic medium \begin{document}$ \Omega $\end{document} is interrogated with an input field that is modulated with a fixed harmonic frequency \begin{document}$ \omega = \frac{k}{c} $\end{document}, where \begin{document}$ c $\end{document} is the speed of light and \begin{document}$ k $\end{document} is the wave number. The stability estimates are established under suitable conditions that include a range of variability for \begin{document}$ k $\end{document} and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:10.1080/00036811.2020.1758314, where a Lipschitz type stability estimate of \begin{document}$ \mu_a $\end{document} on \begin{document}$ \partial\Omega $\end{document} was established in terms of the measurements.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.