正偏转置矩阵和正偏转置矩阵

Pub Date : 2022-12-15 DOI:10.13001/ela.2022.7333
I. Gumus, H. Moradi, M. Sababheh
{"title":"正偏转置矩阵和正偏转置矩阵","authors":"I. Gumus, H. Moradi, M. Sababheh","doi":"10.13001/ela.2022.7333","DOIUrl":null,"url":null,"abstract":"A block matrix $\\left[ \\begin{smallmatrix}A & X \\\\{{X}^{*}} & B \\\\\\end{smallmatrix} \\right]$ is positive partial transpose (PPT) if both $\\left[ \\begin{smallmatrix}A & X \\\\{{X}^{*}} & B \\\\\\end{smallmatrix} \\right]$ and $\\left[ \\begin{smallmatrix}A & {{X}^{*}} \\\\X & B \\\\\\end{smallmatrix} \\right]$ are positive semi-definite. This class is significant in studying the separability criterion for density matrices. The current paper presents new relations for such matrices. This includes some equivalent forms and new related inequalities that extend some results from the literature. In the end of the paper, we present some related results for positive semi-definite block matrices, which have similar forms as those presented for PPT matrices, with applications that include significant improvement of numerical radius inequalities.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On positive and positive partial transpose matrices\",\"authors\":\"I. Gumus, H. Moradi, M. Sababheh\",\"doi\":\"10.13001/ela.2022.7333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A block matrix $\\\\left[ \\\\begin{smallmatrix}A & X \\\\\\\\{{X}^{*}} & B \\\\\\\\\\\\end{smallmatrix} \\\\right]$ is positive partial transpose (PPT) if both $\\\\left[ \\\\begin{smallmatrix}A & X \\\\\\\\{{X}^{*}} & B \\\\\\\\\\\\end{smallmatrix} \\\\right]$ and $\\\\left[ \\\\begin{smallmatrix}A & {{X}^{*}} \\\\\\\\X & B \\\\\\\\\\\\end{smallmatrix} \\\\right]$ are positive semi-definite. This class is significant in studying the separability criterion for density matrices. The current paper presents new relations for such matrices. This includes some equivalent forms and new related inequalities that extend some results from the literature. In the end of the paper, we present some related results for positive semi-definite block matrices, which have similar forms as those presented for PPT matrices, with applications that include significant improvement of numerical radius inequalities.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

块矩阵$\left[\begin{smallmatrix}A&X\\{{X}^{*}}&B\\end{smallmatrix}\right]$是正偏转置(PPT),如果$\left[\begin{smallmatrix}A&X\\{{X}^{*}}&B\\end{smallmatrix}\right]$和$\left[\begin{smallmatrix}A&{{X}^{*}}\\X&B\\end{smallmatrix}\right]$是正半定的。这一类对研究密度矩阵的可分性准则具有重要意义。本文给出了这类矩阵的新关系式。这包括一些等价形式和新的相关不等式,这些不等式扩展了文献中的一些结果。在本文的最后,我们给出了正半定块矩阵的一些相关结果,这些结果与PPT矩阵的形式相似,其应用包括对数值半径不等式的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On positive and positive partial transpose matrices
A block matrix $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ is positive partial transpose (PPT) if both $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ and $\left[ \begin{smallmatrix}A & {{X}^{*}} \\X & B \\\end{smallmatrix} \right]$ are positive semi-definite. This class is significant in studying the separability criterion for density matrices. The current paper presents new relations for such matrices. This includes some equivalent forms and new related inequalities that extend some results from the literature. In the end of the paper, we present some related results for positive semi-definite block matrices, which have similar forms as those presented for PPT matrices, with applications that include significant improvement of numerical radius inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信