J. Ndunagu, K. Ukhurebor, Moses Akaaza, R. B. Onyancha
{"title":"基于无线传感器网络和物联网的智能灌溉系统的开发","authors":"J. Ndunagu, K. Ukhurebor, Moses Akaaza, R. B. Onyancha","doi":"10.1155/2022/7678570","DOIUrl":null,"url":null,"abstract":"This study proposes a smart irrigation system (SIS) using the drip method, which was designed and implemented using wireless sensor networks and an open-source Internet of Things (IoT) cloud computing platform (“Thingspeak.com”) for data collection, storing, data analytics, and visualization. The methodology incorporates the integration of hardware and software components to make irrigation decisions based on web resources like the weather forecast from “weather.com” and sensor values from soil samples. The data collected are then analyzed at the edge server and updated every 15 minutes. Based on the threshold value, the system starts pumping water or stops the irrigation process depending on the irrigation schedule. A web application was developed to display the result so that we could monitor and control the system using an android application edge or a web browser. Based on the data recorded and measured, the data are in comma-separated values (CSV) format and contain 143731 entries with 10 columns. The sample size used contains 5722 rows and 6 columns from the result of our machine learning algorithms using Microsoft Excel and Jupyter Notebook to process and evaluate the performance of the drip SIS, considering the soil moisture, soil temperature, sunlight, rain, and pump. The results confirm the threshold metrics classification evaluation, and some of the metrics computed from our confusion matrix are shown in the classification summary results, showing the accuracy to be 89%, the misclassification rate (error rate) is equal to 10%, the sensitivity is equal to 79%, the specificity is equal to 93%, and the precision of the model is 81%. The evaluation, when compared to K-nearest neighbours using K = 6 and K = 1, shows the prediction accuracy to be 97% and 98%. The results indicate the system is highly efficient and reliable in performing irrigation and managing water resources and can be adopted in rural areas to boost agricultural productivity.","PeriodicalId":38438,"journal":{"name":"Applied and Environmental Soil Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Development of a Wireless Sensor Network and IoT-based Smart Irrigation System\",\"authors\":\"J. Ndunagu, K. Ukhurebor, Moses Akaaza, R. B. Onyancha\",\"doi\":\"10.1155/2022/7678570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a smart irrigation system (SIS) using the drip method, which was designed and implemented using wireless sensor networks and an open-source Internet of Things (IoT) cloud computing platform (“Thingspeak.com”) for data collection, storing, data analytics, and visualization. The methodology incorporates the integration of hardware and software components to make irrigation decisions based on web resources like the weather forecast from “weather.com” and sensor values from soil samples. The data collected are then analyzed at the edge server and updated every 15 minutes. Based on the threshold value, the system starts pumping water or stops the irrigation process depending on the irrigation schedule. A web application was developed to display the result so that we could monitor and control the system using an android application edge or a web browser. Based on the data recorded and measured, the data are in comma-separated values (CSV) format and contain 143731 entries with 10 columns. The sample size used contains 5722 rows and 6 columns from the result of our machine learning algorithms using Microsoft Excel and Jupyter Notebook to process and evaluate the performance of the drip SIS, considering the soil moisture, soil temperature, sunlight, rain, and pump. The results confirm the threshold metrics classification evaluation, and some of the metrics computed from our confusion matrix are shown in the classification summary results, showing the accuracy to be 89%, the misclassification rate (error rate) is equal to 10%, the sensitivity is equal to 79%, the specificity is equal to 93%, and the precision of the model is 81%. The evaluation, when compared to K-nearest neighbours using K = 6 and K = 1, shows the prediction accuracy to be 97% and 98%. The results indicate the system is highly efficient and reliable in performing irrigation and managing water resources and can be adopted in rural areas to boost agricultural productivity.\",\"PeriodicalId\":38438,\"journal\":{\"name\":\"Applied and Environmental Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7678570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7678570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Development of a Wireless Sensor Network and IoT-based Smart Irrigation System
This study proposes a smart irrigation system (SIS) using the drip method, which was designed and implemented using wireless sensor networks and an open-source Internet of Things (IoT) cloud computing platform (“Thingspeak.com”) for data collection, storing, data analytics, and visualization. The methodology incorporates the integration of hardware and software components to make irrigation decisions based on web resources like the weather forecast from “weather.com” and sensor values from soil samples. The data collected are then analyzed at the edge server and updated every 15 minutes. Based on the threshold value, the system starts pumping water or stops the irrigation process depending on the irrigation schedule. A web application was developed to display the result so that we could monitor and control the system using an android application edge or a web browser. Based on the data recorded and measured, the data are in comma-separated values (CSV) format and contain 143731 entries with 10 columns. The sample size used contains 5722 rows and 6 columns from the result of our machine learning algorithms using Microsoft Excel and Jupyter Notebook to process and evaluate the performance of the drip SIS, considering the soil moisture, soil temperature, sunlight, rain, and pump. The results confirm the threshold metrics classification evaluation, and some of the metrics computed from our confusion matrix are shown in the classification summary results, showing the accuracy to be 89%, the misclassification rate (error rate) is equal to 10%, the sensitivity is equal to 79%, the specificity is equal to 93%, and the precision of the model is 81%. The evaluation, when compared to K-nearest neighbours using K = 6 and K = 1, shows the prediction accuracy to be 97% and 98%. The results indicate the system is highly efficient and reliable in performing irrigation and managing water resources and can be adopted in rural areas to boost agricultural productivity.
期刊介绍:
Applied and Environmental Soil Science is a peer-reviewed, Open Access journal that publishes research and review articles in the field of soil science. Its coverage reflects the multidisciplinary nature of soil science, and focuses on studies that take account of the dynamics and spatial heterogeneity of processes in soil. Basic studies of the physical, chemical, biochemical, and biological properties of soil, innovations in soil analysis, and the development of statistical tools will be published. Among the major environmental issues addressed will be: -Pollution by trace elements and nutrients in excess- Climate change and global warming- Soil stability and erosion- Water quality- Quality of agricultural crops- Plant nutrition- Soil hydrology- Biodiversity of soils- Role of micro- and mesofauna in soil