主动学习用于高光谱图像分类的比较研究

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
R. Thoreau, V. Achard, L. Risser, B. Berthelot, X. Briottet
{"title":"主动学习用于高光谱图像分类的比较研究","authors":"R. Thoreau, V. Achard, L. Risser, B. Berthelot, X. Briottet","doi":"10.1109/MGRS.2022.3169947","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms have demonstrated impressive results for land cover mapping from hyperspectral data. To enhance generalization capabilities of statistical models, active learning (AL) methods guide the annotation of the training data set by querying the most informative samples. The training of the classifier can then be performed on an optimal training data set. We bring under the same framework uncertainty, representativeness, and performance-based AL techniques; conduct a benchmark on state-of-the-art methods and release a toolbox (https://github.com/Romain3Ch216/AL4EO) to allow experimentation with these approaches. The experiments are conducted on various data sets: a toy data set, classic hyperspectral benchmark data sets, and a complex hyperspectral scene. We evaluate the methods with usual accuracy metrics as well as complementary metrics, which allow us to provide guidelines when choosing a relevant AL strategy in a real use case.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"256-278"},"PeriodicalIF":16.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Active Learning for Hyperspectral Image Classification: A comparative review\",\"authors\":\"R. Thoreau, V. Achard, L. Risser, B. Berthelot, X. Briottet\",\"doi\":\"10.1109/MGRS.2022.3169947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms have demonstrated impressive results for land cover mapping from hyperspectral data. To enhance generalization capabilities of statistical models, active learning (AL) methods guide the annotation of the training data set by querying the most informative samples. The training of the classifier can then be performed on an optimal training data set. We bring under the same framework uncertainty, representativeness, and performance-based AL techniques; conduct a benchmark on state-of-the-art methods and release a toolbox (https://github.com/Romain3Ch216/AL4EO) to allow experimentation with these approaches. The experiments are conducted on various data sets: a toy data set, classic hyperspectral benchmark data sets, and a complex hyperspectral scene. We evaluate the methods with usual accuracy metrics as well as complementary metrics, which allow us to provide guidelines when choosing a relevant AL strategy in a real use case.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"10 1\",\"pages\":\"256-278\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/MGRS.2022.3169947\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/MGRS.2022.3169947","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 15

摘要

机器学习算法在利用高光谱数据绘制土地覆盖地图方面取得了令人印象深刻的成果。为了提高统计模型的泛化能力,主动学习方法通过查询最有信息量的样本来指导训练数据集的标注。分类器的训练可以在一个最优的训练数据集上进行。我们将不确定性、代表性和基于性能的人工智能技术纳入同一框架;对最先进的方法进行基准测试,并发布一个工具箱(https://github.com/Romain3Ch216/AL4EO),允许对这些方法进行实验。实验在不同的数据集上进行:玩具数据集、经典的高光谱基准数据集和复杂的高光谱场景。我们用通常的准确性度量和补充度量来评估这些方法,这使我们能够在实际用例中选择相关的人工智能策略时提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning for Hyperspectral Image Classification: A comparative review
Machine learning algorithms have demonstrated impressive results for land cover mapping from hyperspectral data. To enhance generalization capabilities of statistical models, active learning (AL) methods guide the annotation of the training data set by querying the most informative samples. The training of the classifier can then be performed on an optimal training data set. We bring under the same framework uncertainty, representativeness, and performance-based AL techniques; conduct a benchmark on state-of-the-art methods and release a toolbox (https://github.com/Romain3Ch216/AL4EO) to allow experimentation with these approaches. The experiments are conducted on various data sets: a toy data set, classic hyperspectral benchmark data sets, and a complex hyperspectral scene. We evaluate the methods with usual accuracy metrics as well as complementary metrics, which allow us to provide guidelines when choosing a relevant AL strategy in a real use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信