难民和移民研究中的大(危机)数据-乌克兰难民案例研究

IF 0.5 Q3 AREA STUDIES
T. Jurić
{"title":"难民和移民研究中的大(危机)数据-乌克兰难民案例研究","authors":"T. Jurić","doi":"10.1515/soeu-2022-0048","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a review of Big Data sources that could be helpful in determining, estimating, and forecasting the forced emigration flows of refugees from Ukraine. The text shows how a Big Data approach can help assess refugees’ intentions. Using insights from social-media platforms such as Facebook, Instagram, and YouTube is useful, because data here are available faster than any official data in the refugee crisis triggered by the Russian attack on Ukraine on 24 February 2022.","PeriodicalId":29828,"journal":{"name":"Comparative Southeast European Studies","volume":"70 1","pages":"540 - 553"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Big (Crisis) Data in Refugee and Migration Studies – Case Study of Ukrainian Refugees\",\"authors\":\"T. Jurić\",\"doi\":\"10.1515/soeu-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a review of Big Data sources that could be helpful in determining, estimating, and forecasting the forced emigration flows of refugees from Ukraine. The text shows how a Big Data approach can help assess refugees’ intentions. Using insights from social-media platforms such as Facebook, Instagram, and YouTube is useful, because data here are available faster than any official data in the refugee crisis triggered by the Russian attack on Ukraine on 24 February 2022.\",\"PeriodicalId\":29828,\"journal\":{\"name\":\"Comparative Southeast European Studies\",\"volume\":\"70 1\",\"pages\":\"540 - 553\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Southeast European Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/soeu-2022-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Southeast European Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/soeu-2022-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文回顾了大数据来源,这些来源可能有助于确定、估计和预测乌克兰难民的被迫移民潮。该文本展示了大数据方法如何帮助评估难民的意图。使用Facebook、Instagram和YouTube等社交媒体平台的见解是有用的,因为在2022年2月24日俄罗斯袭击乌克兰引发的难民危机中,这里的数据比任何官方数据都快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big (Crisis) Data in Refugee and Migration Studies – Case Study of Ukrainian Refugees
Abstract This paper presents a review of Big Data sources that could be helpful in determining, estimating, and forecasting the forced emigration flows of refugees from Ukraine. The text shows how a Big Data approach can help assess refugees’ intentions. Using insights from social-media platforms such as Facebook, Instagram, and YouTube is useful, because data here are available faster than any official data in the refugee crisis triggered by the Russian attack on Ukraine on 24 February 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信