关于广义fi扩展模

Pub Date : 2020-03-31 DOI:10.5666/KMJ.2020.60.1.45
Canan Celep Yucel
{"title":"关于广义fi扩展模","authors":"Canan Celep Yucel","doi":"10.5666/KMJ.2020.60.1.45","DOIUrl":null,"url":null,"abstract":"A module M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M . In this work, we define a module M to be generalized FI-extending (GFI-extending) if for any fully invariant submodule N of M , there exists a direct summand D of M such that N ≤ D and that D/N is singular. The classes of FI-extending modules and singular modules are properly contained in the class of GFIextending modules. We first develop basic properties of this newly defined class of modules in the general module setting. Then, the GFI-extending property is shown to carry over to matrix rings. Finally, we show that the class of GFI-extending modules is closed under direct sums but not under direct summands. However, it is proved that direct summands are GFI-extending under certain restrictions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Generalized FI-extending Modules\",\"authors\":\"Canan Celep Yucel\",\"doi\":\"10.5666/KMJ.2020.60.1.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M . In this work, we define a module M to be generalized FI-extending (GFI-extending) if for any fully invariant submodule N of M , there exists a direct summand D of M such that N ≤ D and that D/N is singular. The classes of FI-extending modules and singular modules are properly contained in the class of GFIextending modules. We first develop basic properties of this newly defined class of modules in the general module setting. Then, the GFI-extending property is shown to carry over to matrix rings. Finally, we show that the class of GFI-extending modules is closed under direct sums but not under direct summands. However, it is proved that direct summands are GFI-extending under certain restrictions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2020.60.1.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2020.60.1.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模M称为FI扩展,如果M的每个完全不变子模在M的直和中是本质的。在这项工作中,我们定义了一个模M为广义FI扩展(GFI扩展),如果对于M的任何完全不变子模N,存在M的直接被和D,使得N≤D,并且D/N是奇异的。FI扩展模和奇异模的类适当地包含在GFI扩展模的类中。我们首先在通用模块设置中开发这个新定义的模块类的基本属性。然后,证明了GFI的扩展性质可以传递到矩阵环。最后,我们证明了一类GFI扩展模在直和下是闭的,但在直和上不是闭的。然而,在一定的限制条件下,证明了直接和是GFI扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Generalized FI-extending Modules
A module M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M . In this work, we define a module M to be generalized FI-extending (GFI-extending) if for any fully invariant submodule N of M , there exists a direct summand D of M such that N ≤ D and that D/N is singular. The classes of FI-extending modules and singular modules are properly contained in the class of GFIextending modules. We first develop basic properties of this newly defined class of modules in the general module setting. Then, the GFI-extending property is shown to carry over to matrix rings. Finally, we show that the class of GFI-extending modules is closed under direct sums but not under direct summands. However, it is proved that direct summands are GFI-extending under certain restrictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信