为什么石墨烯是一种非凡的材料?一份基于十年研究的综述

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sachin Sharma Ashok Kumar, Shahid Bashir, Kasi Ramesh, Subramaniam Ramesh
{"title":"为什么石墨烯是一种非凡的材料?一份基于十年研究的综述","authors":"Sachin Sharma Ashok Kumar,&nbsp;Shahid Bashir,&nbsp;Kasi Ramesh,&nbsp;Subramaniam Ramesh","doi":"10.1007/s11706-022-0603-y","DOIUrl":null,"url":null,"abstract":"<div><p>During this decade, graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength, very good current density, high thermal conductivity, superior electrical conductivity, large surface area, and good electron mobility. The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene. On this basis, for industrial application, researchers are exploring different techniques to produce high-quality graphene. Therefore, reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry. In this work, recent advances on applications of graphene in various fields such as sensors, energy storage, energy harvesting, high-speed optoelectronics, supercapacitors, touch-based flexible screens, and organic light emitting diode displays have been summarized.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Why is graphene an extraordinary material? A review based on a decade of research\",\"authors\":\"Sachin Sharma Ashok Kumar,&nbsp;Shahid Bashir,&nbsp;Kasi Ramesh,&nbsp;Subramaniam Ramesh\",\"doi\":\"10.1007/s11706-022-0603-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During this decade, graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength, very good current density, high thermal conductivity, superior electrical conductivity, large surface area, and good electron mobility. The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene. On this basis, for industrial application, researchers are exploring different techniques to produce high-quality graphene. Therefore, reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry. In this work, recent advances on applications of graphene in various fields such as sensors, energy storage, energy harvesting, high-speed optoelectronics, supercapacitors, touch-based flexible screens, and organic light emitting diode displays have been summarized.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-022-0603-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0603-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

近十年来,石墨烯作为一种易于合成和功能化的薄层碳材料,因其优异的机械强度、良好的电流密度、高导热性、优越的导电性、大表面积和良好的电子迁移率而成为研究的热点。特别是在Geim和Novoselov开发和分析石墨烯之后,石墨烯的研究得到了指数级的发展。在此基础上,为了工业应用,研究人员正在探索不同的技术来生产高质量的石墨烯。因此,本文简要介绍了石墨烯及其衍生物以及一些合成石墨烯的方法及其在研究和工业上的应用前景。本文综述了近年来石墨烯在传感器、储能、能量收集、高速光电子学、超级电容器、基于触摸的柔性屏幕和有机发光二极管显示等领域的应用进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why is graphene an extraordinary material? A review based on a decade of research

During this decade, graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength, very good current density, high thermal conductivity, superior electrical conductivity, large surface area, and good electron mobility. The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene. On this basis, for industrial application, researchers are exploring different techniques to produce high-quality graphene. Therefore, reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry. In this work, recent advances on applications of graphene in various fields such as sensors, energy storage, energy harvesting, high-speed optoelectronics, supercapacitors, touch-based flexible screens, and organic light emitting diode displays have been summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信