偏贝塞尔Baumslag孤立群中的二次方程

Pub Date : 2023-02-14 DOI:10.1142/s0218196723500558
Richard Mandel, A. Ushakov
{"title":"偏贝塞尔Baumslag孤立群中的二次方程","authors":"Richard Mandel, A. Ushakov","doi":"10.1142/s0218196723500558","DOIUrl":null,"url":null,"abstract":"For a finitely generated group $G$, the \\emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\\mathbf{BS}(1,n)$. We prove that this problem is $\\mathbf{NP}$-complete whenever $n\\neq \\pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\\mathcal{C}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quadratic equations in metabelian Baumslag-Solitar groups\",\"authors\":\"Richard Mandel, A. Ushakov\",\"doi\":\"10.1142/s0218196723500558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finitely generated group $G$, the \\\\emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\\\\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\\\\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\\\\mathbf{BS}(1,n)$. We prove that this problem is $\\\\mathbf{NP}$-complete whenever $n\\\\neq \\\\pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\\\\mathcal{C}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196723500558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于有限生成的群$G$, $G$上的\emph{丢}芬图问题是决定给定方程$W(z_1,z_2,\ldots,z_k) = 1$(可能限于方程的一个固定子类)在$G$中是否有解的算法问题。本文研究了次元Baumslag-Solitar群$\mathbf{BS}(1,n)$上二次方程$\mathcal{C}$类Diophantine问题的算法复杂度。我们证明了该问题在$n\neq \pm 1$时是$\mathbf{NP}$ -完备的,并确定了$\mathcal{C}$的各种子类(可定向、不可定向等)的算法复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quadratic equations in metabelian Baumslag-Solitar groups
For a finitely generated group $G$, the \emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\mathbf{BS}(1,n)$. We prove that this problem is $\mathbf{NP}$-complete whenever $n\neq \pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\mathcal{C}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信