{"title":"偏贝塞尔Baumslag孤立群中的二次方程","authors":"Richard Mandel, A. Ushakov","doi":"10.1142/s0218196723500558","DOIUrl":null,"url":null,"abstract":"For a finitely generated group $G$, the \\emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\\mathbf{BS}(1,n)$. We prove that this problem is $\\mathbf{NP}$-complete whenever $n\\neq \\pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\\mathcal{C}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quadratic equations in metabelian Baumslag-Solitar groups\",\"authors\":\"Richard Mandel, A. Ushakov\",\"doi\":\"10.1142/s0218196723500558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finitely generated group $G$, the \\\\emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\\\\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\\\\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\\\\mathbf{BS}(1,n)$. We prove that this problem is $\\\\mathbf{NP}$-complete whenever $n\\\\neq \\\\pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\\\\mathcal{C}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196723500558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quadratic equations in metabelian Baumslag-Solitar groups
For a finitely generated group $G$, the \emph{Diophantine problem} over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. In this paper, we investigate the algorithmic complexity of the Diophantine problem for the class $\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $\mathbf{BS}(1,n)$. We prove that this problem is $\mathbf{NP}$-complete whenever $n\neq \pm 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\mathcal{C}$.