关于存在的充分“局部”条件,得到了涉及临界增长的广义p(.)-拉普拉斯方程的结果

IF 3.2 1区 数学 Q1 MATHEMATICS
Ky Ho, Inbo Sim
{"title":"关于存在的充分“局部”条件,得到了涉及临界增长的广义p(.)-拉普拉斯方程的结果","authors":"Ky Ho, Inbo Sim","doi":"10.1515/anona-2022-0269","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the existence of multiple solutions to a generalized p ( ⋅ ) p\\left(\\cdot ) -Laplace equation with two parameters involving critical growth. More precisely, we give sufficient “local” conditions, which mean that growths between the main operator and nonlinear term are locally assumed for p ( ⋅ ) p\\left(\\cdot ) -sublinear, p ( ⋅ ) p\\left(\\cdot ) -superlinear, and sandwich-type cases. Compared to constant exponent problems (e.g., p p -Laplacian and ( p , q ) \\left(p,q) -Laplacian), this characterizes the study of variable exponent problems. We show this by applying variants of the mountain pass theorem for p ( ⋅ ) p\\left(\\cdot ) -sublinear and p ( ⋅ ) p\\left(\\cdot ) -superlinear cases and constructing critical values defined by a minimax argument in the genus theory for sandwich-type case. Moreover, we also obtain a nontrivial nonnegative solution for sandwich-type case changing the role of parameters. Our work is a generalization of several existing works in the literature.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":"182 - 209"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sufficient “local” conditions for existence results to generalized p(.)-Laplace equations involving critical growth\",\"authors\":\"Ky Ho, Inbo Sim\",\"doi\":\"10.1515/anona-2022-0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the existence of multiple solutions to a generalized p ( ⋅ ) p\\\\left(\\\\cdot ) -Laplace equation with two parameters involving critical growth. More precisely, we give sufficient “local” conditions, which mean that growths between the main operator and nonlinear term are locally assumed for p ( ⋅ ) p\\\\left(\\\\cdot ) -sublinear, p ( ⋅ ) p\\\\left(\\\\cdot ) -superlinear, and sandwich-type cases. Compared to constant exponent problems (e.g., p p -Laplacian and ( p , q ) \\\\left(p,q) -Laplacian), this characterizes the study of variable exponent problems. We show this by applying variants of the mountain pass theorem for p ( ⋅ ) p\\\\left(\\\\cdot ) -sublinear and p ( ⋅ ) p\\\\left(\\\\cdot ) -superlinear cases and constructing critical values defined by a minimax argument in the genus theory for sandwich-type case. Moreover, we also obtain a nontrivial nonnegative solution for sandwich-type case changing the role of parameters. Our work is a generalization of several existing works in the literature.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"12 1\",\"pages\":\"182 - 209\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0269\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0269","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一类具有两个参数的p(⋅)p\left(\cdot) -拉普拉斯方程的多重解的存在性。更准确地说,我们给出了充分的“局部”条件,这意味着对于p(⋅)p\left(\cdot) -次线性,p(⋅)p\left(\cdot) -超线性和三明治型情况,主算子和非线性项之间的增长是局部假设的。与常指数问题(例如,p p -Laplacian和(p,q) \left(p,q) -Laplacian)相比,这是研究变指数问题的特点。我们通过对p(⋅)p\left(\cdot) -次线性和p(⋅)p\left(\cdot) -超线性情况应用山口定理的变体来证明这一点,并构造了三明治型情况下属理论中由极大极小参数定义的临界值。此外,我们还得到了改变参数作用的三明治型情况的非平凡非负解。我们的工作是对文献中已有的几部作品的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sufficient “local” conditions for existence results to generalized p(.)-Laplace equations involving critical growth
Abstract In this article, we study the existence of multiple solutions to a generalized p ( ⋅ ) p\left(\cdot ) -Laplace equation with two parameters involving critical growth. More precisely, we give sufficient “local” conditions, which mean that growths between the main operator and nonlinear term are locally assumed for p ( ⋅ ) p\left(\cdot ) -sublinear, p ( ⋅ ) p\left(\cdot ) -superlinear, and sandwich-type cases. Compared to constant exponent problems (e.g., p p -Laplacian and ( p , q ) \left(p,q) -Laplacian), this characterizes the study of variable exponent problems. We show this by applying variants of the mountain pass theorem for p ( ⋅ ) p\left(\cdot ) -sublinear and p ( ⋅ ) p\left(\cdot ) -superlinear cases and constructing critical values defined by a minimax argument in the genus theory for sandwich-type case. Moreover, we also obtain a nontrivial nonnegative solution for sandwich-type case changing the role of parameters. Our work is a generalization of several existing works in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信