基于HPSO算法的差分放大器的分析和电路尺寸设计性能

Q4 Engineering
C. L. Singh, A. Gogoi, Ch. Anandini, K. L. Baishnab, Loukrakpam Merin
{"title":"基于HPSO算法的差分放大器的分析和电路尺寸设计性能","authors":"C. L. Singh, A. Gogoi, Ch. Anandini, K. L. Baishnab, Loukrakpam Merin","doi":"10.1504/IJNP.2019.10020333","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of thermal noise of differential amplifier and automated sizing procedure with thermal noise incorporation, in addition to various design specifications, as constraints in the design process. Human behaviour-based particle swarm optimisation (HPSO), a swarm intelligence (SI)-based optimisation algorithm is used to perform the sizing task to obtain optimal value of design variables value subject to a satisfying set of constraints, with the main objective of designing a low-noise amplifier with minimum circuit area. The presented design procedure gives an option of considering both width and length of MOS transistor as design variables, which in turn can tune trade-off circuit performance parameters. The computational analysis is performed in MATLAB and CADENCE tool with UMC 180 nm parameters technology is used to validate the presented design procedure. Further, the performance of the purposed automated design methodology is compared with previous design methodology to check its efficiency in terms of speed, time and robustness.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis and circuit sizing performance of a differential amplifier using HPSO algorithm\",\"authors\":\"C. L. Singh, A. Gogoi, Ch. Anandini, K. L. Baishnab, Loukrakpam Merin\",\"doi\":\"10.1504/IJNP.2019.10020333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of thermal noise of differential amplifier and automated sizing procedure with thermal noise incorporation, in addition to various design specifications, as constraints in the design process. Human behaviour-based particle swarm optimisation (HPSO), a swarm intelligence (SI)-based optimisation algorithm is used to perform the sizing task to obtain optimal value of design variables value subject to a satisfying set of constraints, with the main objective of designing a low-noise amplifier with minimum circuit area. The presented design procedure gives an option of considering both width and length of MOS transistor as design variables, which in turn can tune trade-off circuit performance parameters. The computational analysis is performed in MATLAB and CADENCE tool with UMC 180 nm parameters technology is used to validate the presented design procedure. Further, the performance of the purposed automated design methodology is compared with previous design methodology to check its efficiency in terms of speed, time and robustness.\",\"PeriodicalId\":14016,\"journal\":{\"name\":\"International Journal of Nanoparticles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNP.2019.10020333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNP.2019.10020333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文对差分放大器的热噪声进行了分析,并将热噪声与各种设计规范结合起来,作为设计过程中的约束条件。基于人类行为的粒子群优化(HPSO)是一种基于群体智能(SI)的优化算法,用于执行尺寸确定任务,以获得受一组令人满意的约束的设计变量值的最优值,主要目标是设计具有最小电路面积的低噪声放大器。所提出的设计过程提供了一种选择,即将MOS晶体管的宽度和长度都作为设计变量,这反过来又可以调整权衡电路的性能参数。在MATLAB中进行了计算分析,并使用CADENCE工具和UMC 180 nm参数技术对所提出的设计程序进行了验证。此外,将目标自动化设计方法的性能与以前的设计方法进行比较,以检查其在速度、时间和稳健性方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and circuit sizing performance of a differential amplifier using HPSO algorithm
This paper presents an analysis of thermal noise of differential amplifier and automated sizing procedure with thermal noise incorporation, in addition to various design specifications, as constraints in the design process. Human behaviour-based particle swarm optimisation (HPSO), a swarm intelligence (SI)-based optimisation algorithm is used to perform the sizing task to obtain optimal value of design variables value subject to a satisfying set of constraints, with the main objective of designing a low-noise amplifier with minimum circuit area. The presented design procedure gives an option of considering both width and length of MOS transistor as design variables, which in turn can tune trade-off circuit performance parameters. The computational analysis is performed in MATLAB and CADENCE tool with UMC 180 nm parameters technology is used to validate the presented design procedure. Further, the performance of the purposed automated design methodology is compared with previous design methodology to check its efficiency in terms of speed, time and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanoparticles
International Journal of Nanoparticles Engineering-Mechanical Engineering
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信