涉及k-Mittag-Leffler函数的分数阶动力学方程的分数阶积分与解

IF 0.3 Q4 MATHEMATICS
Mehar Chand , Jyotindra C. Prajapati , Ebenezer Bonyah
{"title":"涉及k-Mittag-Leffler函数的分数阶动力学方程的分数阶积分与解","authors":"Mehar Chand ,&nbsp;Jyotindra C. Prajapati ,&nbsp;Ebenezer Bonyah","doi":"10.1016/j.trmi.2017.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, our main objective is to establish certain new fractional integral by applying the Saigo hypergeometric fractional integral operators and by employing some integral transforms on the resulting formulas, we presented their image formulas involving the product of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function. Furthermore, We develop a new and further generalized form of the fractional kinetic equation involving the product of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function. The manifold generality of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function is discussed in terms of the solution of the fractional kinetic equation and their graphical interpretation is interpreted in the present paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably) new results.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 2","pages":"Pages 144-166"},"PeriodicalIF":0.3000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.03.003","citationCount":"19","resultStr":"{\"title\":\"Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function\",\"authors\":\"Mehar Chand ,&nbsp;Jyotindra C. Prajapati ,&nbsp;Ebenezer Bonyah\",\"doi\":\"10.1016/j.trmi.2017.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, our main objective is to establish certain new fractional integral by applying the Saigo hypergeometric fractional integral operators and by employing some integral transforms on the resulting formulas, we presented their image formulas involving the product of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function. Furthermore, We develop a new and further generalized form of the fractional kinetic equation involving the product of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function. The manifold generality of the generalized <span><math><mi>k</mi></math></span>-Mittag-Leffler function is discussed in terms of the solution of the fractional kinetic equation and their graphical interpretation is interpreted in the present paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably) new results.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 2\",\"pages\":\"Pages 144-166\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.03.003\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216301416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216301416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

本文的主要目的是利用Saigo超几何分数阶积分算子建立新的分数阶积分,并通过对所得公式的积分变换,给出了涉及广义k-Mittag-Leffler函数积的分数阶积分像公式。在此基础上,提出了包含广义k-Mittag-Leffler函数积的分数阶动力学方程的一种新的更广义的形式。本文从分数阶动力学方程的解出发,讨论了广义k-Mittag-Leffler函数的流形一般性,并给出了它的图解解释。这里得到的结果在本质上是相当普遍的,并且能够产生大量已知的和(可能)新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function

In this paper, our main objective is to establish certain new fractional integral by applying the Saigo hypergeometric fractional integral operators and by employing some integral transforms on the resulting formulas, we presented their image formulas involving the product of the generalized k-Mittag-Leffler function. Furthermore, We develop a new and further generalized form of the fractional kinetic equation involving the product of the generalized k-Mittag-Leffler function. The manifold generality of the generalized k-Mittag-Leffler function is discussed in terms of the solution of the fractional kinetic equation and their graphical interpretation is interpreted in the present paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably) new results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信