重新绘制得克萨斯州达拉斯的犯罪热点

IF 2.9 2区 社会学 Q1 CRIMINOLOGY & PENOLOGY
A. Wheeler, Sydney Reuter
{"title":"重新绘制得克萨斯州达拉斯的犯罪热点","authors":"A. Wheeler, Sydney Reuter","doi":"10.1177/1098611120957948","DOIUrl":null,"url":null,"abstract":"In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a clustering algorithm, using law enforcement cost of responding to crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime cost at a higher density. We also show that the clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a clustering technique in practice.","PeriodicalId":47610,"journal":{"name":"Police Quarterly","volume":"24 1","pages":"159 - 184"},"PeriodicalIF":2.9000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1098611120957948","citationCount":"6","resultStr":"{\"title\":\"Redrawing Hot Spots of Crime in Dallas, Texas\",\"authors\":\"A. Wheeler, Sydney Reuter\",\"doi\":\"10.1177/1098611120957948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a clustering algorithm, using law enforcement cost of responding to crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime cost at a higher density. We also show that the clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a clustering technique in practice.\",\"PeriodicalId\":47610,\"journal\":{\"name\":\"Police Quarterly\",\"volume\":\"24 1\",\"pages\":\"159 - 184\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1098611120957948\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Police Quarterly\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/1098611120957948\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRIMINOLOGY & PENOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Police Quarterly","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/1098611120957948","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们评估了识别德克萨斯州达拉斯长期微观热点的预测能力。我们使用聚类算法创建热点,使用响应犯罪估计的执法成本作为权重。相对于达拉斯警察局目前定义的更大的热点地区,我们确定的热点要小得多(不到3平方英里),抓捕犯罪的成本更高。我们还表明,聚类算法捕获了广泛的热点类型阵列;一些是一两个地址,一些是街道段,还有一些是更大区域的聚集。这表明,基于特定的聚合单元(例如地址、街道段)来识别热点的效率可能不如实际中使用聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redrawing Hot Spots of Crime in Dallas, Texas
In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a clustering algorithm, using law enforcement cost of responding to crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime cost at a higher density. We also show that the clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a clustering technique in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Police Quarterly
Police Quarterly CRIMINOLOGY & PENOLOGY-
CiteScore
5.90
自引率
6.50%
发文量
22
期刊介绍: Police Quarterly is a scholarly, peer-reviewed journal that publishes theoretical contributions, empirical studies, essays, comparative analyses, critiques, innovative program descriptions, debates, and book reviews on issues related to policing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信