黎曼流形上的几何波传播子

Pub Date : 2019-02-19 DOI:10.4310/CAG.2022.v30.n8.a2
Matteo Capoferri, M. Levitin, D. Vassiliev
{"title":"黎曼流形上的几何波传播子","authors":"Matteo Capoferri, M. Levitin, D. Vassiliev","doi":"10.4310/CAG.2022.v30.n8.a2","DOIUrl":null,"url":null,"abstract":"We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase function. This enables us to provide a global invariant definition of the full symbol of the propagator - a scalar function on the cotangent bundle - and an algorithm for the explicit calculation of its homogeneous components. The central part of the paper is devoted to the detailed analysis of the subprincipal symbol; in particular, we derive its explicit small time asymptotic expansion. We present a general geometric construction that allows one to visualise topological obstructions and describe their circumvention with the use of a complex-valued phase function. We illustrate the general framework with explicit examples in dimension two.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Geometric wave propagator on Riemannian manifolds\",\"authors\":\"Matteo Capoferri, M. Levitin, D. Vassiliev\",\"doi\":\"10.4310/CAG.2022.v30.n8.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase function. This enables us to provide a global invariant definition of the full symbol of the propagator - a scalar function on the cotangent bundle - and an algorithm for the explicit calculation of its homogeneous components. The central part of the paper is devoted to the detailed analysis of the subprincipal symbol; in particular, we derive its explicit small time asymptotic expansion. We present a general geometric construction that allows one to visualise topological obstructions and describe their circumvention with the use of a complex-valued phase function. We illustrate the general framework with explicit examples in dimension two.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CAG.2022.v30.n8.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CAG.2022.v30.n8.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了波动方程在闭黎曼流形$M$上的传播子。我们提出了一种几何方法,将传播子构造为具有不同复值相位函数的空间和时间上的单个振荡积分全局。这使我们能够提供传播子的全符号(余切丛上的标量函数)的全局不变定义,以及显式计算其齐次分量的算法。论文的中心部分是对次主符号的详细分析;特别地,我们导出了它的显式小时间渐近展开式。我们提出了一种通用的几何构造,允许人们可视化拓扑障碍物,并使用复值相函数描述它们的规避。我们在第二维度中用明确的例子来说明一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Geometric wave propagator on Riemannian manifolds
We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase function. This enables us to provide a global invariant definition of the full symbol of the propagator - a scalar function on the cotangent bundle - and an algorithm for the explicit calculation of its homogeneous components. The central part of the paper is devoted to the detailed analysis of the subprincipal symbol; in particular, we derive its explicit small time asymptotic expansion. We present a general geometric construction that allows one to visualise topological obstructions and describe their circumvention with the use of a complex-valued phase function. We illustrate the general framework with explicit examples in dimension two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信