{"title":"二维局部纳什群","authors":"E. Baro, J. Vicente, M. Otero","doi":"10.1093/QMATH/HAAB021","DOIUrl":null,"url":null,"abstract":"\n We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\\mathbb{R}$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QMATH/HAAB021","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Locally Nash Groups\",\"authors\":\"E. Baro, J. Vicente, M. Otero\",\"doi\":\"10.1093/QMATH/HAAB021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\\\\mathbb{R}$.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QMATH/HAAB021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/QMATH/HAAB021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAB021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\mathbb{R}$.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.