二维局部纳什群

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Baro, J. Vicente, M. Otero
{"title":"二维局部纳什群","authors":"E. Baro, J. Vicente, M. Otero","doi":"10.1093/QMATH/HAAB021","DOIUrl":null,"url":null,"abstract":"\n We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\\mathbb{R}$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QMATH/HAAB021","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Locally Nash Groups\",\"authors\":\"E. Baro, J. Vicente, M. Otero\",\"doi\":\"10.1093/QMATH/HAAB021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\\\\mathbb{R}$.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QMATH/HAAB021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/QMATH/HAAB021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAB021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了二维连通阿贝尔局部(实)纳什群的分类。首先考虑painlevel对亚纯映射的代数加法定理的描述,并分析了亚纯映射的代数相关性。然后给出了二维连通阿贝尔局部复纳什群的分类,并由此推导出相应的实分类。因此,我们得到了定义在$\mathbb{R}$上的二维阿贝尔不可约代数群的一个分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Locally Nash Groups
We give a classification of connected abelian locally (real) Nash groups of dimension two. We first consider Painlevé’s description of meromorphic maps admitting an algebraic addition theorem and analyse the algebraic dependence of such maps. We then give a classification of connected abelian locally complex Nash groups of dimension two, from which we deduce the corresponding real classification. As a consequence, we obtain a classification of two-dimensional abelian irreducible algebraic groups defined over $\mathbb{R}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信