关于聚合泊松观测的参数估计

IF 0.5 Q3 MATHEMATICS
Elhadji Ousseynouu Accrachi, Cherif Ahmat Tidiane Aidara, A. S. Dabye
{"title":"关于聚合泊松观测的参数估计","authors":"Elhadji Ousseynouu Accrachi, Cherif Ahmat Tidiane Aidara, A. S. Dabye","doi":"10.52737/18291163-2019.11.5-1-13","DOIUrl":null,"url":null,"abstract":"We consider the problem of parameter estimation by the observations of inhomogeneous Poisson processes. The intensity function of the process is supposed to be a smooth function with respect to the unknown parameter. We propose a Chi-square statistic on the base of agregated observations and we define a Minimum Chi-square Estimator with the help of this statistics. We show this that estimator is consistent and asymptotically normal. We discuss possible generalizations of the obtained results.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Parameter Estimation by Aggregated Poisson Observations\",\"authors\":\"Elhadji Ousseynouu Accrachi, Cherif Ahmat Tidiane Aidara, A. S. Dabye\",\"doi\":\"10.52737/18291163-2019.11.5-1-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of parameter estimation by the observations of inhomogeneous Poisson processes. The intensity function of the process is supposed to be a smooth function with respect to the unknown parameter. We propose a Chi-square statistic on the base of agregated observations and we define a Minimum Chi-square Estimator with the help of this statistics. We show this that estimator is consistent and asymptotically normal. We discuss possible generalizations of the obtained results.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2019.11.5-1-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2019.11.5-1-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了通过非齐次泊松过程的观测来估计参数的问题。该过程的强度函数被认为是关于未知参数的光滑函数。我们在一致观测的基础上提出了一个卡方统计量,并在此统计量的帮助下定义了一个最小卡方估计。我们证明了估计量是一致的和渐近正态的。我们讨论了所得结果的可能推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Parameter Estimation by Aggregated Poisson Observations
We consider the problem of parameter estimation by the observations of inhomogeneous Poisson processes. The intensity function of the process is supposed to be a smooth function with respect to the unknown parameter. We propose a Chi-square statistic on the base of agregated observations and we define a Minimum Chi-square Estimator with the help of this statistics. We show this that estimator is consistent and asymptotically normal. We discuss possible generalizations of the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信