Michael Arias, J. Munoz-Gama, M. Sepúlveda, J. C. Miranda
{"title":"按需和批量场景中基于多因素标准的人力资源分配或推荐","authors":"Michael Arias, J. Munoz-Gama, M. Sepúlveda, J. C. Miranda","doi":"10.1504/EJIE.2018.092009","DOIUrl":null,"url":null,"abstract":"Dynamic resource allocation is considered a major challenge in the context of business process management. At the operational level, flexible methods that support resource allocation and which consider different criteria at run-time are required. It is also important that these methods are able to support multiple allocations in a simultaneous manner. In this paper, we present a framework based on multi-factor criteria that proposes a recommender system which is capable of recommending the most suitable resources for executing a range of different activities, while also considering individual requests or requests made in blocks. To evaluate the proposed framework, a number of experiments were conducted using different test scenarios. These scenarios provide evidence that our approach based on multi-factor criteria successfully allocates the most suitable resources for executing a process in real and flexible environments. In order to demonstrate this assertion, we use a help-desk process as a real case study. [Received: 19 May 2017; Revised: 23 October 2017; Accepted: 31 January 2018]","PeriodicalId":51047,"journal":{"name":"European Journal of Industrial Engineering","volume":"12 1","pages":"364-404"},"PeriodicalIF":1.9000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/EJIE.2018.092009","citationCount":"14","resultStr":"{\"title\":\"Human resource allocation or recommendation based on multi-factor criteria in on-demand and batch scenarios\",\"authors\":\"Michael Arias, J. Munoz-Gama, M. Sepúlveda, J. C. Miranda\",\"doi\":\"10.1504/EJIE.2018.092009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic resource allocation is considered a major challenge in the context of business process management. At the operational level, flexible methods that support resource allocation and which consider different criteria at run-time are required. It is also important that these methods are able to support multiple allocations in a simultaneous manner. In this paper, we present a framework based on multi-factor criteria that proposes a recommender system which is capable of recommending the most suitable resources for executing a range of different activities, while also considering individual requests or requests made in blocks. To evaluate the proposed framework, a number of experiments were conducted using different test scenarios. These scenarios provide evidence that our approach based on multi-factor criteria successfully allocates the most suitable resources for executing a process in real and flexible environments. In order to demonstrate this assertion, we use a help-desk process as a real case study. [Received: 19 May 2017; Revised: 23 October 2017; Accepted: 31 January 2018]\",\"PeriodicalId\":51047,\"journal\":{\"name\":\"European Journal of Industrial Engineering\",\"volume\":\"12 1\",\"pages\":\"364-404\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2018-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/EJIE.2018.092009\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2018.092009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2018.092009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Human resource allocation or recommendation based on multi-factor criteria in on-demand and batch scenarios
Dynamic resource allocation is considered a major challenge in the context of business process management. At the operational level, flexible methods that support resource allocation and which consider different criteria at run-time are required. It is also important that these methods are able to support multiple allocations in a simultaneous manner. In this paper, we present a framework based on multi-factor criteria that proposes a recommender system which is capable of recommending the most suitable resources for executing a range of different activities, while also considering individual requests or requests made in blocks. To evaluate the proposed framework, a number of experiments were conducted using different test scenarios. These scenarios provide evidence that our approach based on multi-factor criteria successfully allocates the most suitable resources for executing a process in real and flexible environments. In order to demonstrate this assertion, we use a help-desk process as a real case study. [Received: 19 May 2017; Revised: 23 October 2017; Accepted: 31 January 2018]
期刊介绍:
EJIE is an international journal aimed at disseminating the latest developments in all areas of industrial engineering, including information and service industries, ergonomics and safety, quality management as well as business and strategy, and at bridging the gap between theory and practice.