Leech格顶点算子代数的维数公式和广义深孔

IF 5.7 1区 数学 Q1 MATHEMATICS
S. Møller, Nils R. Scheithauer
{"title":"Leech格顶点算子代数的维数公式和广义深孔","authors":"S. Møller, Nils R. Scheithauer","doi":"10.4007/annals.2023.197.1.4","DOIUrl":null,"url":null,"abstract":"We prove a dimension formula for the weight-1 subspace of a vertex operator algebra $V^{\\operatorname{orb}(g)}$ obtained by orbifolding a strongly rational, holomorphic vertex operator algebra $V$ of central charge 24 with a finite order automorphism $g$. Based on an upper bound derived from this formula we introduce the notion of a generalised deep hole in $\\operatorname{Aut}(V)$. \nWe then give a construction of all 70 strongly rational, holomorphic vertex operator algebras of central charge 24 with non-vanishing weight-1 space as orbifolds of the Leech lattice vertex operator algebra $V_\\Lambda$ associated with generalised deep holes. This provides the first uniform construction of these vertex operator algebras and naturally generalises the construction of the 23 Niemeier lattices with non-vanishing root system from the deep holes of the Leech lattice $\\Lambda$ by Conway, Parker and Sloane.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Dimension formulae and generalised deep holes of the Leech lattice vertex operator algebra\",\"authors\":\"S. Møller, Nils R. Scheithauer\",\"doi\":\"10.4007/annals.2023.197.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a dimension formula for the weight-1 subspace of a vertex operator algebra $V^{\\\\operatorname{orb}(g)}$ obtained by orbifolding a strongly rational, holomorphic vertex operator algebra $V$ of central charge 24 with a finite order automorphism $g$. Based on an upper bound derived from this formula we introduce the notion of a generalised deep hole in $\\\\operatorname{Aut}(V)$. \\nWe then give a construction of all 70 strongly rational, holomorphic vertex operator algebras of central charge 24 with non-vanishing weight-1 space as orbifolds of the Leech lattice vertex operator algebra $V_\\\\Lambda$ associated with generalised deep holes. This provides the first uniform construction of these vertex operator algebras and naturally generalises the construction of the 23 Niemeier lattices with non-vanishing root system from the deep holes of the Leech lattice $\\\\Lambda$ by Conway, Parker and Sloane.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.1.4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.1.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

我们证明了顶点算子代数$V^{\operatorname{orb}(g)}$的权-1子空间的一个维数公式,该子空间是通过对中心电荷为24的具有有限阶自同构$g$的强有理全纯顶点算子代数$V$进行轨道化得到的。基于由该公式导出的上界,我们在$\operatorname{Aut}(V)$中引入了广义深孔的概念。然后,我们给出了所有70个中心电荷为24且权1空间不消失的强有理全纯顶点算子代数作为Leech格顶点算子代数$V_\Lambda$与广义深孔相关的轨道的构造。这提供了这些顶点算子代数的第一个统一构造,并自然地推广了由Conway, Parker和Sloane的Leech格$\Lambda$的深孔构造的23个具有不消失根的尼迈耶格的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension formulae and generalised deep holes of the Leech lattice vertex operator algebra
We prove a dimension formula for the weight-1 subspace of a vertex operator algebra $V^{\operatorname{orb}(g)}$ obtained by orbifolding a strongly rational, holomorphic vertex operator algebra $V$ of central charge 24 with a finite order automorphism $g$. Based on an upper bound derived from this formula we introduce the notion of a generalised deep hole in $\operatorname{Aut}(V)$. We then give a construction of all 70 strongly rational, holomorphic vertex operator algebras of central charge 24 with non-vanishing weight-1 space as orbifolds of the Leech lattice vertex operator algebra $V_\Lambda$ associated with generalised deep holes. This provides the first uniform construction of these vertex operator algebras and naturally generalises the construction of the 23 Niemeier lattices with non-vanishing root system from the deep holes of the Leech lattice $\Lambda$ by Conway, Parker and Sloane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信