图的分类和强积的零和流数

IF 0.6 Q3 MATHEMATICS
Muhammad Aamer Rashid, Sarfraz Ahmad, M. Hanif, M. K. Siddiqui, M. Naeem
{"title":"图的分类和强积的零和流数","authors":"Muhammad Aamer Rashid, Sarfraz Ahmad, M. Hanif, M. K. Siddiqui, M. Naeem","doi":"10.22108/TOC.2020.120375.1689","DOIUrl":null,"url":null,"abstract":"A zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum $k$-flow if the absolute values of edges are less than $k$. We define the zero-sum flow number of $G$ as the least integer $k$ for which $G$ admitting a zero sum $k$-flow.? In this paper we gave complete zero-sum flow and zero sum numbers for categorical and strong product of two graphs namely cycle and paths.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"181-199"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Sum Flow Number of Categorical and Strong Product of Graphs\",\"authors\":\"Muhammad Aamer Rashid, Sarfraz Ahmad, M. Hanif, M. K. Siddiqui, M. Naeem\",\"doi\":\"10.22108/TOC.2020.120375.1689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum $k$-flow if the absolute values of edges are less than $k$. We define the zero-sum flow number of $G$ as the least integer $k$ for which $G$ admitting a zero sum $k$-flow.? In this paper we gave complete zero-sum flow and zero sum numbers for categorical and strong product of two graphs namely cycle and paths.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"9 1\",\"pages\":\"181-199\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.120375.1689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.120375.1689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

零和流是对边的非零整数赋值,使得与每个顶点相关的所有边的值之和为零,如果边的绝对值小于k,我们称其为零和流。我们将$G$的零和流数定义为$G$承认零和流的最小整数$k$。本文给出了循环和路径两个图的范畴强积的完全零和流和零和数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Sum Flow Number of Categorical and Strong Product of Graphs
A zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum $k$-flow if the absolute values of edges are less than $k$. We define the zero-sum flow number of $G$ as the least integer $k$ for which $G$ admitting a zero sum $k$-flow.? In this paper we gave complete zero-sum flow and zero sum numbers for categorical and strong product of two graphs namely cycle and paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信