黎曼-刘维尔分数阶微分方程边值问题的极大值、反极大值原理和单调方法

IF 0.6 Q3 MATHEMATICS
Cubo Pub Date : 2023-08-07 DOI:10.56754/0719-0646.2502.251
P. Eloe, Jeffrey T. Neugebauer
{"title":"黎曼-刘维尔分数阶微分方程边值问题的极大值、反极大值原理和单调方法","authors":"P. Eloe, Jeffrey T. Neugebauer","doi":"10.56754/0719-0646.2502.251","DOIUrl":null,"url":null,"abstract":"It has been shown that, under suitable hypotheses, boundary value problems of the form, $Ly+\\lambda y=f,$ $BC y =0$ where $L$ is a linear ordinary or partial differential operator and $BC$ denotes a linear boundary operator, then there exists $\\Lambda >0$ such that $f\\ge 0$ implies $\\lambda y \\ge 0$ for $\\lambda\\in [-\\Lambda ,\\Lambda ]\\setminus\\{0\\},$ where $y$ is the unique solution of $Ly+\\lambda y=f,$ $BC y =0$. So, the boundary value problem satisfies a maximum principle for $\\lambda\\in [-\\Lambda ,0)$ and the boundary value problem satisfies an anti-maximum principle for $\\lambda\\in (0, \\Lambda ]$. In an abstract result, we shall provide suitable hypotheses such that boundary value problems of the form, $D_{0}^{\\alpha}y+\\beta D_{0}^{\\alpha -1}y=f,$ $BC y =0$ where $D_{0}^{\\alpha}$ is a Riemann-Liouville fractional differentiable operator of order $\\alpha$, $1<\\alpha \\le 2$, and $BC$ denotes a linear boundary operator, then there exists $\\mathcal{B} >0$ such that $f\\ge 0$ implies $\\beta D_{0}^{\\alpha -1}y \\ge 0$ for $\\beta \\in [-\\mathcal{B} ,\\mathcal{B} ]\\setminus\\{0\\},$ where $y$ is the unique solution of $D_{0}^{\\alpha}y+\\beta D_{0}^{\\alpha -1}y =f,$ $BC y =0$. Two examples are provided in which the hypotheses of the abstract theorem are satisfied to obtain the sign property of $\\beta D_{0}^{\\alpha -1}y.$ The boundary conditions are chosen so that with further analysis a sign property of $\\beta y$ is also obtained. One application of monotone methods is developed to illustrate the utility of the abstract result.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues\",\"authors\":\"P. Eloe, Jeffrey T. Neugebauer\",\"doi\":\"10.56754/0719-0646.2502.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that, under suitable hypotheses, boundary value problems of the form, $Ly+\\\\lambda y=f,$ $BC y =0$ where $L$ is a linear ordinary or partial differential operator and $BC$ denotes a linear boundary operator, then there exists $\\\\Lambda >0$ such that $f\\\\ge 0$ implies $\\\\lambda y \\\\ge 0$ for $\\\\lambda\\\\in [-\\\\Lambda ,\\\\Lambda ]\\\\setminus\\\\{0\\\\},$ where $y$ is the unique solution of $Ly+\\\\lambda y=f,$ $BC y =0$. So, the boundary value problem satisfies a maximum principle for $\\\\lambda\\\\in [-\\\\Lambda ,0)$ and the boundary value problem satisfies an anti-maximum principle for $\\\\lambda\\\\in (0, \\\\Lambda ]$. In an abstract result, we shall provide suitable hypotheses such that boundary value problems of the form, $D_{0}^{\\\\alpha}y+\\\\beta D_{0}^{\\\\alpha -1}y=f,$ $BC y =0$ where $D_{0}^{\\\\alpha}$ is a Riemann-Liouville fractional differentiable operator of order $\\\\alpha$, $1<\\\\alpha \\\\le 2$, and $BC$ denotes a linear boundary operator, then there exists $\\\\mathcal{B} >0$ such that $f\\\\ge 0$ implies $\\\\beta D_{0}^{\\\\alpha -1}y \\\\ge 0$ for $\\\\beta \\\\in [-\\\\mathcal{B} ,\\\\mathcal{B} ]\\\\setminus\\\\{0\\\\},$ where $y$ is the unique solution of $D_{0}^{\\\\alpha}y+\\\\beta D_{0}^{\\\\alpha -1}y =f,$ $BC y =0$. Two examples are provided in which the hypotheses of the abstract theorem are satisfied to obtain the sign property of $\\\\beta D_{0}^{\\\\alpha -1}y.$ The boundary conditions are chosen so that with further analysis a sign property of $\\\\beta y$ is also obtained. One application of monotone methods is developed to illustrate the utility of the abstract result.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2502.251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

已经证明,在适当的假设下, $Ly+\lambda y=f,$ $BC y =0$ 在哪里 $L$ 线性常微分算子还是偏微分算子 $BC$ 表示线性边界算子,则存在 $\Lambda >0$ 这样 $f\ge 0$ 暗示 $\lambda y \ge 0$ 为了 $\lambda\in [-\Lambda ,\Lambda ]\setminus\{0\},$ 在哪里 $y$ 的唯一解是 $Ly+\lambda y=f,$ $BC y =0$。因此,边值问题满足极大值原则 $\lambda\in [-\Lambda ,0)$ 且边值问题满足反极大值原则 $\lambda\in (0, \Lambda ]$。在一个抽象的结果中,我们将提供合适的假设,使得, $D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y=f,$ $BC y =0$ 在哪里 $D_{0}^{\alpha}$ Riemann-Liouville分数可微算子是阶的吗 $\alpha$, $10$ 这样 $f\ge 0$ 暗示 $\beta D_{0}^{\alpha -1}y \ge 0$ 为了 $\beta \in [-\mathcal{B} ,\mathcal{B} ]\setminus\{0\},$ 在哪里 $y$ 的唯一解是 $D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y =f,$ $BC y =0$。给出了两个满足抽象定理假设的例子,得到了的符号性质 $\beta D_{0}^{\alpha -1}y.$ 选择边界条件,以便进一步分析得到的符号性质 $\beta y$ 也是得到的。本文给出了单调方法的一个应用,以说明抽象结果的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues
It has been shown that, under suitable hypotheses, boundary value problems of the form, $Ly+\lambda y=f,$ $BC y =0$ where $L$ is a linear ordinary or partial differential operator and $BC$ denotes a linear boundary operator, then there exists $\Lambda >0$ such that $f\ge 0$ implies $\lambda y \ge 0$ for $\lambda\in [-\Lambda ,\Lambda ]\setminus\{0\},$ where $y$ is the unique solution of $Ly+\lambda y=f,$ $BC y =0$. So, the boundary value problem satisfies a maximum principle for $\lambda\in [-\Lambda ,0)$ and the boundary value problem satisfies an anti-maximum principle for $\lambda\in (0, \Lambda ]$. In an abstract result, we shall provide suitable hypotheses such that boundary value problems of the form, $D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y=f,$ $BC y =0$ where $D_{0}^{\alpha}$ is a Riemann-Liouville fractional differentiable operator of order $\alpha$, $1<\alpha \le 2$, and $BC$ denotes a linear boundary operator, then there exists $\mathcal{B} >0$ such that $f\ge 0$ implies $\beta D_{0}^{\alpha -1}y \ge 0$ for $\beta \in [-\mathcal{B} ,\mathcal{B} ]\setminus\{0\},$ where $y$ is the unique solution of $D_{0}^{\alpha}y+\beta D_{0}^{\alpha -1}y =f,$ $BC y =0$. Two examples are provided in which the hypotheses of the abstract theorem are satisfied to obtain the sign property of $\beta D_{0}^{\alpha -1}y.$ The boundary conditions are chosen so that with further analysis a sign property of $\beta y$ is also obtained. One application of monotone methods is developed to illustrate the utility of the abstract result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信