18650锂离子电池材料性能的鉴定,用于改进电池测试中使用的电化学模型

IF 0.5 Q4 ENGINEERING, CHEMICAL
Bence Csomós, D. Fodor
{"title":"18650锂离子电池材料性能的鉴定,用于改进电池测试中使用的电化学模型","authors":"Bence Csomós, D. Fodor","doi":"10.33927/hjic-2020-06","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present an application of the generalized Warburg element and Constant Phase Element (CPE) for non-Fickian diffusion modeling. These distributed elements are intended to provide a better fit of low-frequency impedance data than the standard finite-length Warburg element in the case of most batteries. In addition, the current study demonstrates the ambiguity of the finite-length Warburg element if impedance data is insufficient within the verylow-frequency impedance spectrum. In order to select the appropriate Randles circuit for non-Fickian diffusion modeling, several configurations have been investigated. Based on the best fit of impedance data, the State-of-Charge (SoC) dependency of the Randles circuit parameters has also been analyzed. This study concerns a Samsung ICR18650-26F 2600 mAh battery cell which was subjected to Electrochemical Impedance Spectroscopy (EIS) measurements between 10 mHz and 100 kHz as a function of SoC. The results were plotted and compared in the form of Nyquist plots. The Randles circuit parameters such as the resistances Rs and Rct, double-layer Cdl, leaky capacitance CPE and Warburg coefficients were estimated using ZView software. The present paper shows that CPE – and its QPE form – is a recommended choice to yield the best fit in terms of non-Fickian diffusion impedance. In addition, using CPE is a better alternative to avoid problems with initial values and multiple local solutions, which may exist in the case of the Warburg element. The resultant Randles circuit parameters and their SoC characteristics can be effectively used in further electrochemical modeling.","PeriodicalId":43118,"journal":{"name":"Hungarian Journal of Industry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of the material properties of an 18650 Li-ion battery for improving the electrochemical model used in cell testing\",\"authors\":\"Bence Csomós, D. Fodor\",\"doi\":\"10.33927/hjic-2020-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present an application of the generalized Warburg element and Constant Phase Element (CPE) for non-Fickian diffusion modeling. These distributed elements are intended to provide a better fit of low-frequency impedance data than the standard finite-length Warburg element in the case of most batteries. In addition, the current study demonstrates the ambiguity of the finite-length Warburg element if impedance data is insufficient within the verylow-frequency impedance spectrum. In order to select the appropriate Randles circuit for non-Fickian diffusion modeling, several configurations have been investigated. Based on the best fit of impedance data, the State-of-Charge (SoC) dependency of the Randles circuit parameters has also been analyzed. This study concerns a Samsung ICR18650-26F 2600 mAh battery cell which was subjected to Electrochemical Impedance Spectroscopy (EIS) measurements between 10 mHz and 100 kHz as a function of SoC. The results were plotted and compared in the form of Nyquist plots. The Randles circuit parameters such as the resistances Rs and Rct, double-layer Cdl, leaky capacitance CPE and Warburg coefficients were estimated using ZView software. The present paper shows that CPE – and its QPE form – is a recommended choice to yield the best fit in terms of non-Fickian diffusion impedance. In addition, using CPE is a better alternative to avoid problems with initial values and multiple local solutions, which may exist in the case of the Warburg element. The resultant Randles circuit parameters and their SoC characteristics can be effectively used in further electrochemical modeling.\",\"PeriodicalId\":43118,\"journal\":{\"name\":\"Hungarian Journal of Industry and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Journal of Industry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33927/hjic-2020-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33927/hjic-2020-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是介绍广义Warburg单元和常相单元(CPE)在非菲克扩散建模中的应用。在大多数电池的情况下,这些分布式元件旨在提供比标准有限长度Warburg元件更好的低频阻抗数据拟合。此外,当前的研究表明,如果阻抗数据在极低频阻抗谱内不足,则有限长度Warburg单元具有模糊性。为了选择合适的Randles电路进行非Fickian扩散建模,已经研究了几种配置。基于阻抗数据的最佳拟合,还分析了Randles电路参数对充电状态(SoC)的依赖性。本研究涉及三星ICR1860-26F2600毫安时电池,该电池在10mHz和100kHz之间进行了电化学阻抗谱(EIS)测量,作为SoC的函数。将结果绘制并以奈奎斯特图的形式进行比较。使用ZView软件估计了Randles电路的参数,如电阻Rs和Rct、双层Cdl、漏电容CPE和Warburg系数。本文表明,CPE及其QPE形式是根据非菲克扩散阻抗产生最佳拟合的推荐选择。此外,使用CPE是避免初始值和多个局部解问题的更好选择,这些问题可能存在于Warburg元素的情况下。所得的Randles电路参数及其SoC特性可以有效地用于进一步的电化学建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of the material properties of an 18650 Li-ion battery for improving the electrochemical model used in cell testing
The aim of this paper is to present an application of the generalized Warburg element and Constant Phase Element (CPE) for non-Fickian diffusion modeling. These distributed elements are intended to provide a better fit of low-frequency impedance data than the standard finite-length Warburg element in the case of most batteries. In addition, the current study demonstrates the ambiguity of the finite-length Warburg element if impedance data is insufficient within the verylow-frequency impedance spectrum. In order to select the appropriate Randles circuit for non-Fickian diffusion modeling, several configurations have been investigated. Based on the best fit of impedance data, the State-of-Charge (SoC) dependency of the Randles circuit parameters has also been analyzed. This study concerns a Samsung ICR18650-26F 2600 mAh battery cell which was subjected to Electrochemical Impedance Spectroscopy (EIS) measurements between 10 mHz and 100 kHz as a function of SoC. The results were plotted and compared in the form of Nyquist plots. The Randles circuit parameters such as the resistances Rs and Rct, double-layer Cdl, leaky capacitance CPE and Warburg coefficients were estimated using ZView software. The present paper shows that CPE – and its QPE form – is a recommended choice to yield the best fit in terms of non-Fickian diffusion impedance. In addition, using CPE is a better alternative to avoid problems with initial values and multiple local solutions, which may exist in the case of the Warburg element. The resultant Randles circuit parameters and their SoC characteristics can be effectively used in further electrochemical modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
9
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信