抗血小板治疗中的药物遗传学考虑

IF 1 Q4 PHARMACOLOGY & PHARMACY
P. Gurbel, A. Rout, U. Tantry
{"title":"抗血小板治疗中的药物遗传学考虑","authors":"P. Gurbel, A. Rout, U. Tantry","doi":"10.1080/23808993.2020.1768844","DOIUrl":null,"url":null,"abstract":"Oral antiplatelet therapy with aspirin and a P2Y12 receptor blocker constitutes a major strategy to prevent thrombotic events in patients with arterial diseases. Among available P2Y12 receptor blockers, ticagrelor is a potent direct-acting drug, whereas clopidogrel and prasugrel (thienopyridines) are prodrugs that require cytochrome (CYP) P450 based in vivo conversion to an active metabolite to irreversibly inhibit the P2Y12 receptor. Wide antiplatelet response variability was observed during clopidogrel treatment, with nearly one in three subjects exhibiting minimal or no inhibition of adenosine diphosphate-induced platelet aggregation. The latter phenomenon is termed clopidogrel non-responsiveness or resistance [1,2]. Despite these limitations and guideline recommendations for the preference of ticagrelor or prasugrel, clopidogrel remains the most used P2Y12 inhibitor in the current practice even in patients with acute coronary syndromes (ACS) [3–5]. Pharmacogenetics associated with P2Y12 receptor blocker therapy, especially clopidogrel, their clinical implications and potential utility of personalized antiplatelet therapy based on genetic testing are discussed here. Pharmacokinetic and pharmacodynamic studies have revealed that variable active metabolite generation is associated with clopidogrel response variability. The latter, in part, is affected by carriage of single nucleotide polymorphism (SNPs) of genes encoding CYPs that are responsible for clopidogrel metabolism. Among > 30 CYP2C19 alleles, CYP2C19 * 1, with normal activity, is the most prevalent allele. Carriage of a loss-of function allele (LoF) is associated with reduced clopidogrel active metabolite generation. In subjects with CYP2C19*2, the most common LoF, a guanine>adenine mutation in exon 5 of CYP2C19 (rs42442850) creates an aberrant splice site resulting in an altered reading frame at amino acid 215 and a premature stop codon 20 amino acids downstream. The final result is a nonfunctional truncated protein, lack of translation resulting from nonsense-mediated messenger RNA decay, or both. Other LoFs are *3-*8. LoF carriage is estimated at ~25%, ~33% and ~55% in Caucasians, African Americans and Asians, respectively. Carriage of a gain-of-function allele (GoF) (CYP2C19*17) is associated with increased clopidogrel active metabolite generation. Carriage of GoF is ~34%, 30% and 4% in Caucasians, African Americans and Asians, respectively [2]. In patients treated with clopidogrel, LoF allele carriage is associated with a reduced antiplatelet response, an increased prevalence of high platelet reactivity to ADP (HPR), and an increased risk for post-stenting ischemic event occurrence, including stent thrombosis. The relation between GoF allele carriage and clinical outcomes is less robust. The association between SNPs of paroxonase-1(PON-1) and ABCB1, clopidogrel metabolism, and clinical outcomes remains controversial [2]. CYP2C19 isoenzyme is not the only factor determining the antiplatelet response to clopidogrel, as even in poor metabolizers, some degree of platelet inhibition has been observed where no enzyme activity is expected [2]. In addition, gastrointestinal absorption, demographic variables such as old age, diabetes mellitus, and renal insufficiency; drug-drug interactions at CYPP450 levels such as calcium channel blockers, proton pump inhibitors; smoking status, obesity and adherence to clopidogrel therapy influence antiplatelet response independent of genetic polymorphisms of CYP2C19 gene [2]. The strong association of LoF allele carriage with clopidogrel response variability was confirmed in a genome wide association study conducted in healthy Amish individuals who were administered 75 mg/day clopidogrel for 7 days. CYP2C19*2 was associated with ADP-stimulated platelet aggregation after clopidogrel administration, with a high degree of statistical significance (p = 4.3 × 10). The relation of LoF allele carriage and adverse post-percutaneous coronary intervention (PCI) ischemic event occurrence was demonstrated in general CAD patients undergoing PCI and treated with clopidogrel in the same publication [6]. Phenotypic expression, as expected, remains variable within the genotype. Therefore, CYP2C19 genotype, except for the *2/*2 homozygous state cannot predict the presence of HPR with 100% certainty in patients treated with clopidogrel [7]. Observational studies and meta-analyses have demonstrated the strong relationship between LoF carriage and clinical outcomes, mainly in patients treated with coronary stenting. The latter has been shown to be dose-dependent with an increased prevalence of stent thrombosis associated with carriage of two LoF alleles compared to one LoF allele [8]. In May 2009, the United States Food and Drug Administration (FDA) added a ‘boxed warning’ about the use of other antiplatelet medications or alternative dosing strategies for clopidogrel in genetically predicted poor metabolizers [9]. However, current clinical guidelines do not recommend routine genotype testing [3,4]. Treatment with more potent P2Y12 receptor blockers such as prasugrel or ticagrelor, but not high","PeriodicalId":12124,"journal":{"name":"Expert Review of Precision Medicine and Drug Development","volume":"5 1","pages":"235 - 238"},"PeriodicalIF":1.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23808993.2020.1768844","citationCount":"1","resultStr":"{\"title\":\"Pharmacogenetic considerations in antiplatelet therapy\",\"authors\":\"P. Gurbel, A. Rout, U. Tantry\",\"doi\":\"10.1080/23808993.2020.1768844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oral antiplatelet therapy with aspirin and a P2Y12 receptor blocker constitutes a major strategy to prevent thrombotic events in patients with arterial diseases. Among available P2Y12 receptor blockers, ticagrelor is a potent direct-acting drug, whereas clopidogrel and prasugrel (thienopyridines) are prodrugs that require cytochrome (CYP) P450 based in vivo conversion to an active metabolite to irreversibly inhibit the P2Y12 receptor. Wide antiplatelet response variability was observed during clopidogrel treatment, with nearly one in three subjects exhibiting minimal or no inhibition of adenosine diphosphate-induced platelet aggregation. The latter phenomenon is termed clopidogrel non-responsiveness or resistance [1,2]. Despite these limitations and guideline recommendations for the preference of ticagrelor or prasugrel, clopidogrel remains the most used P2Y12 inhibitor in the current practice even in patients with acute coronary syndromes (ACS) [3–5]. Pharmacogenetics associated with P2Y12 receptor blocker therapy, especially clopidogrel, their clinical implications and potential utility of personalized antiplatelet therapy based on genetic testing are discussed here. Pharmacokinetic and pharmacodynamic studies have revealed that variable active metabolite generation is associated with clopidogrel response variability. The latter, in part, is affected by carriage of single nucleotide polymorphism (SNPs) of genes encoding CYPs that are responsible for clopidogrel metabolism. Among > 30 CYP2C19 alleles, CYP2C19 * 1, with normal activity, is the most prevalent allele. Carriage of a loss-of function allele (LoF) is associated with reduced clopidogrel active metabolite generation. In subjects with CYP2C19*2, the most common LoF, a guanine>adenine mutation in exon 5 of CYP2C19 (rs42442850) creates an aberrant splice site resulting in an altered reading frame at amino acid 215 and a premature stop codon 20 amino acids downstream. The final result is a nonfunctional truncated protein, lack of translation resulting from nonsense-mediated messenger RNA decay, or both. Other LoFs are *3-*8. LoF carriage is estimated at ~25%, ~33% and ~55% in Caucasians, African Americans and Asians, respectively. Carriage of a gain-of-function allele (GoF) (CYP2C19*17) is associated with increased clopidogrel active metabolite generation. Carriage of GoF is ~34%, 30% and 4% in Caucasians, African Americans and Asians, respectively [2]. In patients treated with clopidogrel, LoF allele carriage is associated with a reduced antiplatelet response, an increased prevalence of high platelet reactivity to ADP (HPR), and an increased risk for post-stenting ischemic event occurrence, including stent thrombosis. The relation between GoF allele carriage and clinical outcomes is less robust. The association between SNPs of paroxonase-1(PON-1) and ABCB1, clopidogrel metabolism, and clinical outcomes remains controversial [2]. CYP2C19 isoenzyme is not the only factor determining the antiplatelet response to clopidogrel, as even in poor metabolizers, some degree of platelet inhibition has been observed where no enzyme activity is expected [2]. In addition, gastrointestinal absorption, demographic variables such as old age, diabetes mellitus, and renal insufficiency; drug-drug interactions at CYPP450 levels such as calcium channel blockers, proton pump inhibitors; smoking status, obesity and adherence to clopidogrel therapy influence antiplatelet response independent of genetic polymorphisms of CYP2C19 gene [2]. The strong association of LoF allele carriage with clopidogrel response variability was confirmed in a genome wide association study conducted in healthy Amish individuals who were administered 75 mg/day clopidogrel for 7 days. CYP2C19*2 was associated with ADP-stimulated platelet aggregation after clopidogrel administration, with a high degree of statistical significance (p = 4.3 × 10). The relation of LoF allele carriage and adverse post-percutaneous coronary intervention (PCI) ischemic event occurrence was demonstrated in general CAD patients undergoing PCI and treated with clopidogrel in the same publication [6]. Phenotypic expression, as expected, remains variable within the genotype. Therefore, CYP2C19 genotype, except for the *2/*2 homozygous state cannot predict the presence of HPR with 100% certainty in patients treated with clopidogrel [7]. Observational studies and meta-analyses have demonstrated the strong relationship between LoF carriage and clinical outcomes, mainly in patients treated with coronary stenting. The latter has been shown to be dose-dependent with an increased prevalence of stent thrombosis associated with carriage of two LoF alleles compared to one LoF allele [8]. In May 2009, the United States Food and Drug Administration (FDA) added a ‘boxed warning’ about the use of other antiplatelet medications or alternative dosing strategies for clopidogrel in genetically predicted poor metabolizers [9]. However, current clinical guidelines do not recommend routine genotype testing [3,4]. Treatment with more potent P2Y12 receptor blockers such as prasugrel or ticagrelor, but not high\",\"PeriodicalId\":12124,\"journal\":{\"name\":\"Expert Review of Precision Medicine and Drug Development\",\"volume\":\"5 1\",\"pages\":\"235 - 238\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23808993.2020.1768844\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Precision Medicine and Drug Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23808993.2020.1768844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Precision Medicine and Drug Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23808993.2020.1768844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

摘要

然而,目前的临床指南不建议进行常规基因型检测[3,4]。使用更强效的P2Y12受体阻滞剂如普拉格雷或替卡格雷治疗,但不高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacogenetic considerations in antiplatelet therapy
Oral antiplatelet therapy with aspirin and a P2Y12 receptor blocker constitutes a major strategy to prevent thrombotic events in patients with arterial diseases. Among available P2Y12 receptor blockers, ticagrelor is a potent direct-acting drug, whereas clopidogrel and prasugrel (thienopyridines) are prodrugs that require cytochrome (CYP) P450 based in vivo conversion to an active metabolite to irreversibly inhibit the P2Y12 receptor. Wide antiplatelet response variability was observed during clopidogrel treatment, with nearly one in three subjects exhibiting minimal or no inhibition of adenosine diphosphate-induced platelet aggregation. The latter phenomenon is termed clopidogrel non-responsiveness or resistance [1,2]. Despite these limitations and guideline recommendations for the preference of ticagrelor or prasugrel, clopidogrel remains the most used P2Y12 inhibitor in the current practice even in patients with acute coronary syndromes (ACS) [3–5]. Pharmacogenetics associated with P2Y12 receptor blocker therapy, especially clopidogrel, their clinical implications and potential utility of personalized antiplatelet therapy based on genetic testing are discussed here. Pharmacokinetic and pharmacodynamic studies have revealed that variable active metabolite generation is associated with clopidogrel response variability. The latter, in part, is affected by carriage of single nucleotide polymorphism (SNPs) of genes encoding CYPs that are responsible for clopidogrel metabolism. Among > 30 CYP2C19 alleles, CYP2C19 * 1, with normal activity, is the most prevalent allele. Carriage of a loss-of function allele (LoF) is associated with reduced clopidogrel active metabolite generation. In subjects with CYP2C19*2, the most common LoF, a guanine>adenine mutation in exon 5 of CYP2C19 (rs42442850) creates an aberrant splice site resulting in an altered reading frame at amino acid 215 and a premature stop codon 20 amino acids downstream. The final result is a nonfunctional truncated protein, lack of translation resulting from nonsense-mediated messenger RNA decay, or both. Other LoFs are *3-*8. LoF carriage is estimated at ~25%, ~33% and ~55% in Caucasians, African Americans and Asians, respectively. Carriage of a gain-of-function allele (GoF) (CYP2C19*17) is associated with increased clopidogrel active metabolite generation. Carriage of GoF is ~34%, 30% and 4% in Caucasians, African Americans and Asians, respectively [2]. In patients treated with clopidogrel, LoF allele carriage is associated with a reduced antiplatelet response, an increased prevalence of high platelet reactivity to ADP (HPR), and an increased risk for post-stenting ischemic event occurrence, including stent thrombosis. The relation between GoF allele carriage and clinical outcomes is less robust. The association between SNPs of paroxonase-1(PON-1) and ABCB1, clopidogrel metabolism, and clinical outcomes remains controversial [2]. CYP2C19 isoenzyme is not the only factor determining the antiplatelet response to clopidogrel, as even in poor metabolizers, some degree of platelet inhibition has been observed where no enzyme activity is expected [2]. In addition, gastrointestinal absorption, demographic variables such as old age, diabetes mellitus, and renal insufficiency; drug-drug interactions at CYPP450 levels such as calcium channel blockers, proton pump inhibitors; smoking status, obesity and adherence to clopidogrel therapy influence antiplatelet response independent of genetic polymorphisms of CYP2C19 gene [2]. The strong association of LoF allele carriage with clopidogrel response variability was confirmed in a genome wide association study conducted in healthy Amish individuals who were administered 75 mg/day clopidogrel for 7 days. CYP2C19*2 was associated with ADP-stimulated platelet aggregation after clopidogrel administration, with a high degree of statistical significance (p = 4.3 × 10). The relation of LoF allele carriage and adverse post-percutaneous coronary intervention (PCI) ischemic event occurrence was demonstrated in general CAD patients undergoing PCI and treated with clopidogrel in the same publication [6]. Phenotypic expression, as expected, remains variable within the genotype. Therefore, CYP2C19 genotype, except for the *2/*2 homozygous state cannot predict the presence of HPR with 100% certainty in patients treated with clopidogrel [7]. Observational studies and meta-analyses have demonstrated the strong relationship between LoF carriage and clinical outcomes, mainly in patients treated with coronary stenting. The latter has been shown to be dose-dependent with an increased prevalence of stent thrombosis associated with carriage of two LoF alleles compared to one LoF allele [8]. In May 2009, the United States Food and Drug Administration (FDA) added a ‘boxed warning’ about the use of other antiplatelet medications or alternative dosing strategies for clopidogrel in genetically predicted poor metabolizers [9]. However, current clinical guidelines do not recommend routine genotype testing [3,4]. Treatment with more potent P2Y12 receptor blockers such as prasugrel or ticagrelor, but not high
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
9
期刊介绍: Expert Review of Precision Medicine and Drug Development publishes primarily review articles covering the development and clinical application of medicine to be used in a personalized therapy setting; in addition, the journal also publishes original research and commentary-style articles. In an era where medicine is recognizing that a one-size-fits-all approach is not always appropriate, it has become necessary to identify patients responsive to treatments and treat patient populations using a tailored approach. Areas covered include: Development and application of drugs targeted to specific genotypes and populations, as well as advanced diagnostic technologies and significant biomarkers that aid in this. Clinical trials and case studies within personalized therapy and drug development. Screening, prediction and prevention of disease, prediction of adverse events, treatment monitoring, effects of metabolomics and microbiomics on treatment. Secondary population research, genome-wide association studies, disease–gene association studies, personal genome technologies. Ethical and cost–benefit issues, the impact to healthcare and business infrastructure, and regulatory issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信