Jatin Gharat, B. Kumar, L. Ragha, Amit Barve, Shaik Mohammad Jeelani, J. Clyne
{"title":"用于气象数据分析的NCL等效串行和并行python例程的开发","authors":"Jatin Gharat, B. Kumar, L. Ragha, Amit Barve, Shaik Mohammad Jeelani, J. Clyne","doi":"10.1177/10943420221077110","DOIUrl":null,"url":null,"abstract":"The NCAR Command Language (NCL) is a popular scripting language used in the geoscience community for weather data analysis and visualization. Hundreds of years of data are analyzed daily using NCL to make accurate weather predictions. However, due to its sequential nature of execution, it cannot properly utilize the parallel processing power provided by High-Performance Computing systems (HPCs). Until now very few techniques have been developed to make use of the multi-core functionality of modern HPC systems on these functions. In the recent trend, open-source languages are becoming highly popular because they support major functionalities required for data analysis and parallel computing. Hence, developers of NCL have decided to adopt Python as the future scripting language for analysis and visualization and to enable the geosciences community to play an active role in its development and support. This study focuses on developing some of the widely used NCL routines in Python. To deal with the analysis of large datasets, parallel versions of these routines are developed to work within a single node and make use of multi-core CPUs to achieve parallelism. Results show high accuracy between NCL and Python outputs and the parallel versions provided good scaling compared to their sequential counterparts.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"337 - 355"},"PeriodicalIF":2.5000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of NCL equivalent serial and parallel python routines for meteorological data analysis\",\"authors\":\"Jatin Gharat, B. Kumar, L. Ragha, Amit Barve, Shaik Mohammad Jeelani, J. Clyne\",\"doi\":\"10.1177/10943420221077110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NCAR Command Language (NCL) is a popular scripting language used in the geoscience community for weather data analysis and visualization. Hundreds of years of data are analyzed daily using NCL to make accurate weather predictions. However, due to its sequential nature of execution, it cannot properly utilize the parallel processing power provided by High-Performance Computing systems (HPCs). Until now very few techniques have been developed to make use of the multi-core functionality of modern HPC systems on these functions. In the recent trend, open-source languages are becoming highly popular because they support major functionalities required for data analysis and parallel computing. Hence, developers of NCL have decided to adopt Python as the future scripting language for analysis and visualization and to enable the geosciences community to play an active role in its development and support. This study focuses on developing some of the widely used NCL routines in Python. To deal with the analysis of large datasets, parallel versions of these routines are developed to work within a single node and make use of multi-core CPUs to achieve parallelism. Results show high accuracy between NCL and Python outputs and the parallel versions provided good scaling compared to their sequential counterparts.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"36 1\",\"pages\":\"337 - 355\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420221077110\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221077110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Development of NCL equivalent serial and parallel python routines for meteorological data analysis
The NCAR Command Language (NCL) is a popular scripting language used in the geoscience community for weather data analysis and visualization. Hundreds of years of data are analyzed daily using NCL to make accurate weather predictions. However, due to its sequential nature of execution, it cannot properly utilize the parallel processing power provided by High-Performance Computing systems (HPCs). Until now very few techniques have been developed to make use of the multi-core functionality of modern HPC systems on these functions. In the recent trend, open-source languages are becoming highly popular because they support major functionalities required for data analysis and parallel computing. Hence, developers of NCL have decided to adopt Python as the future scripting language for analysis and visualization and to enable the geosciences community to play an active role in its development and support. This study focuses on developing some of the widely used NCL routines in Python. To deal with the analysis of large datasets, parallel versions of these routines are developed to work within a single node and make use of multi-core CPUs to achieve parallelism. Results show high accuracy between NCL and Python outputs and the parallel versions provided good scaling compared to their sequential counterparts.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.