{"title":"汇率预测:非线性GARCH-NN建模方法","authors":"Fahima Charef","doi":"10.1007/s40745-022-00458-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper targets the description of the fusion of modeling techniques, such as the GARCH model and the Artificial Neural Network (ANN), for the sake of predicting financial series and precisely the series of the exchange rate in Tunisia, namely the USD/TND, the EUR/TND and the YEN/TND, for a daily frequency extending from 2015 through 2019. To our knowledge, this is the only paper that focuses on the descriptions of the fusion of modeling techniques (GARCH-NN) or hybridization method that applied on Tunisian currency (TND). The empirical results show that the hybrid model (GARCH-NN) outperforms and it is more efficient than the two used models. In fact, this method combines the advantages of two approaches in order to obtain a result more satisfactory for the expectations of the policy-makers in the exchange market in order to take their decisions. The results showed that the model proposed gives better results, so, can be an alternative of standard linear autoregressive model. This result has been joined by many empirical studies that confirm the quality and performance of this methodology, which researchers advise to be retained in all areas.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exchange Rate Forecasting: Nonlinear GARCH-NN Modeling Approach\",\"authors\":\"Fahima Charef\",\"doi\":\"10.1007/s40745-022-00458-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper targets the description of the fusion of modeling techniques, such as the GARCH model and the Artificial Neural Network (ANN), for the sake of predicting financial series and precisely the series of the exchange rate in Tunisia, namely the USD/TND, the EUR/TND and the YEN/TND, for a daily frequency extending from 2015 through 2019. To our knowledge, this is the only paper that focuses on the descriptions of the fusion of modeling techniques (GARCH-NN) or hybridization method that applied on Tunisian currency (TND). The empirical results show that the hybrid model (GARCH-NN) outperforms and it is more efficient than the two used models. In fact, this method combines the advantages of two approaches in order to obtain a result more satisfactory for the expectations of the policy-makers in the exchange market in order to take their decisions. The results showed that the model proposed gives better results, so, can be an alternative of standard linear autoregressive model. This result has been joined by many empirical studies that confirm the quality and performance of this methodology, which researchers advise to be retained in all areas.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-022-00458-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00458-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
This paper targets the description of the fusion of modeling techniques, such as the GARCH model and the Artificial Neural Network (ANN), for the sake of predicting financial series and precisely the series of the exchange rate in Tunisia, namely the USD/TND, the EUR/TND and the YEN/TND, for a daily frequency extending from 2015 through 2019. To our knowledge, this is the only paper that focuses on the descriptions of the fusion of modeling techniques (GARCH-NN) or hybridization method that applied on Tunisian currency (TND). The empirical results show that the hybrid model (GARCH-NN) outperforms and it is more efficient than the two used models. In fact, this method combines the advantages of two approaches in order to obtain a result more satisfactory for the expectations of the policy-makers in the exchange market in order to take their decisions. The results showed that the model proposed gives better results, so, can be an alternative of standard linear autoregressive model. This result has been joined by many empirical studies that confirm the quality and performance of this methodology, which researchers advise to be retained in all areas.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.